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Chapter 1

Introduction

1.1 What is optimisation?

Optimisation is one of these words that has many meanings, depending on the context you take as
a reference. In the context of this book, optimisation refers to mathematical optimisation, which
is a discipline of applied mathematics.

In mathematical optimisation, we build upon concepts and techniques from calculus, analysis,
linear algebra, and other domains of mathematics to develop methods to find values for variables (or
solutions) within a given domain that maximise (or minimise) the value of a function. Specifically,
we are trying to solve the following general problem:

min. f(x) (1.1)

s.t.: x ∈ X.
That is, we would like to find the solution x that minimises the value of the objective function f ,
such that (s.t.) x belongs to the feasibility set X. In a general sense, problems like this can be
solved by employing the following strategy:

1. Analysing properties of the function f(x) under specific domains and deriving the conditions
that must be satisfied such that a point x is a candidate optimal point.

2. Applying numerical methods that iteratively search for points satisfying these conditions.

This idea is central in several knowledge domains and often is described with area-specific nomen-
clature. Fields such as economics, engineering, statistics, machine learning and, perhaps more
broadly, operations research, are intensive users and developers of optimisation theory and appli-
cations.

1.1.1 Mathematical programming and optimisation

Operations research and mathematical optimisation are somewhat intertwined, as they both were
born around a similar circumstance.

I personally like to separate mathematical programming from (mathematical) optimisation. Math-
ematical programming is a modelling paradigm in which we rely on (very powerful, I might add)
analogies to model real-world problems. In that, we look at a given decision problem considering
that:

• variables represent decisions, as in a business decision or a course of action. Examples include
setting the parameters of (e.g., prediction) models, production systems layouts, geometries
of structures, topologies of networks, and so forth;

13
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• domain represents business rules or constraints, representing logic relations, design or engi-
neering limitations, requirements, and such;

• objective function is a function that provides a measure of solution quality.

With these in mind, we can represent the decision problem as a mathematical programming model
of the form of (1.1) that can be solved using optimisation methods. From now on, we will refer
to this specific class of models as mathematical optimisation models, or optimisation models for
short. We will also use the term solve the problem to refer to the task of finding optimal solutions
to optimisation models.

This book mostly focuses on the optimisation techniques employed to find optimal solutions for
these models. As we will see, depending on the nature of the functions that are used to formulate
the model, some methods might be more or less appropriate. Further complicating the issue, for
models of a given nature, there might be alternative algorithms that can be employed, with no
generalised consensus on whether one method is generally better performing than another, which is
one of the aspects that make optimisation so exciting and multifaceted when it comes to alternative
approaches. I hope that this makes more sense as we progress through the chapters.

1.1.2 Types of mathematical optimisation models

In general, the simpler the assumptions on the parts forming the optimisation model, the more
efficient the methods to solve such problems.

Let us define some additional notation that we will use from now on. Consider a model in the
general form

min. f(x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X,

where f : Rn → R is the objective function, g : Rn → Rm is a collection of m inequality constraints
and h : Rn → Rl is a collection of l equality constraints.

In fact, every inequality constraint can be represented by an equality constraint by making hi(x) =
gi(x)+xn+1 and augmenting the decision variable vector x ∈ Rn to include the slack variable xn+1.
However, since these constraints behave very differently from an algorithmic standpoint, we will
explicitly represent both whenever necessary.

The most general types of models are the following. We also use this as an opportunity to define
some (admittedly confusing) nomenclature from the field of operations research that we will be
using in these notes.

1. Unconstrained models: in these, the set X = Rn and m = l = 0. These are prominent in,
e.g., machine learning and statistics applications, where f represents a measure of model
fitness or prediction error.

2. Linear programming (LP): presumes linear objective function f(x) = c⊤x and affine con-
straints g and h, i.e., of the form a⊤i x − bi, with ai ∈ Rn and b ∈ R. Normally, X =
{x ∈ Rn | xj ≥ 0, j = 1, . . . , n} enforce that the domain of the decision variables is the non-
negative orthant.
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3. Nonlinear programming (NLP): some or all of the functions f , g, and h are nonlinear.

4. Mixed-integer (linear) programming (MIP): consists of an LP in which some (or all, being
then simply integer programming) of the variables are constrained to be integers. In other
words, X ⊆ Rk × Zn−k. Very frequently, the integer variables are constrained to be binary
terms, i.e., xi ∈ {0, 1}, for i = 1, . . . , n − k and are meant to represent true-or-false or
yes-or-no conditions.

5. Mixed-integer nonlinear programming (MINLP): are the intersection of MIPs and NLPs.

Remark: notice that we use the vector notation c⊤x =
∑

j∈J cjxj , with J = {1, . . . , N}. This is
just a convenience for keeping the notation compact.

1.2 Linear programming applications

We will consider now a few examples of liner programming models with somewhat general structure.
Many of these examples have features that can be combined into more general models.

1.2.1 Resource allocation

Most linear programming (LP) problems can be interpreted as a resource allocation problem. In
that, we are interested in defining an optimal allocation of resources (i.e., a plan) that maximises
return or minimises costs and satisfies allocation rules.

Specifically, let I = {1, . . . ,m} be a set of resources that can be combined to produce products in
the set J = {1, . . . , n}. Assume that we are given a return cj per unit of product j, ∀j ∈ J , and
a list of aij , ∀i ∈ I, ∀j ∈ J , describing which and how much of the resources i ∈ I are required for
making product j ∈ J . Assume that the availability bi of resource i, ∀i ∈ I, is known.
Our objective is to define the amounts xj representing the production of j ∈ J . We would like to
define those in a way that we optimise the resource allocation plan quality (in our case, maximise
return from the production quantities xj) while making sure the resources needed for production
do not exceed the availability of resources. For that, we need to define:

The objective function, which measures the quality of a production plan. In this case, the total
return for a given plan is given by:

max.
∑

j∈J

cjxj ⇒ c⊤x,

where c = [c1, . . . , cN ]⊤ and x = [x1, . . . , xN ]⊤ are n-sized vectors. Notice that c⊤x denotes the
inner (or dot) product. The transpose sign ⊤ is meant to reinforce that we see our vectors as
column vectors, unless otherwise stated.

Next, we need to define constraints that state the conditions for a plan to be valid. In this context,
a valid plan is a plan that does not utilise more than the amount of available resources bi, ∀i ∈ I.
This can be expressed as the collection (one for each i ∈ I) of affine (more often wrongly called,
as we will too, linear) inequalities

s.t.:
∑

j∈J

aijxj ≤ bi,∀i ∈ I ⇒ Ax ≤ b,
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where aij are the components of the M ×N matrix A and b = [b1, . . . , bM ]⊤. Furthermore, we also
must require that xi ≥ 0,∀i ∈ I.
Combining the above, we obtain the generic formulation that will be used throughout this text to
represent linear programming models:

max. c⊤x (1.2)

s.t.: Ax ≤ b (1.3)

x ≥ 0. (1.4)

Illustrative example: the paint factory problem [5]

Let us work on a more specific example that will be useful for illustrating some important concepts
related to the geometry of linear programming problems.

Let us consider a paint factory that produces exterior and interior paint from raw materials M1
and M2. The maximum demand for interior paint is 2 tons/day. Moreover, the amount of interior
paint produced cannot exceed that of exterior paint by more than 1 ton/day.

Our goal is to determine the optimal paint production plan. Table 1.1 summarises the data to
be considered. Notice the constraints that must be imposed to represent the daily availability of
paint.

material (ton)/paint (ton)
exterior paint interior paint daily availability (ton)

material M1 6 4 24
material M2 1 2 6

profit ($1000 /ton) 5 4

Table 1.1: Paint factory problem data

The paint factory problem is an example of a resource allocation problem. Perhaps one aspect that
is somewhat dissimilar is the constraint representing the production rules regarding the relative
amounts of exterior and interior paint. Notice, however, that this type of constraint also has the
same format as the more straightforward resource allocation constraints.

Let x1 be the amount produced of exterior paint (in tons) and x2 the amount of interior paint.
The complete model that optimises the daily production plan of the paint factory is:

max. z = 5x1 + 4x2 (1.5)

s.t.: 6x1 + 4x2 ≤ 24 (1.6)

x1 + 2x2 ≤ 6 (1.7)

x2 − x1 ≤ 1 (1.8)

x2 ≤ 2 (1.9)

x1, x2 ≥ 0. (1.10)

Notice that paint factory model can also be compactly represented as in (1.2)–(1.4), where

c = [5, 4], x = [x1, x2], A =




6 4
1 2
−1 1
0 1


 , and b = [24, 6, 1, 2].
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1.2.2 Transportation problem

Another important class of linear programming problems is those known as transportation prob-
lems. These problems are often modelled using the abstraction of graphs since they consider a
network of nodes and arcs through which some flow must be optimised. Transportation problems
have several important characteristics that can be exploited to design specialised algorithms, the
so-called network simplex method. Although we will not discuss network simplex in this text, the
simplex method (and its variant, the dual simplex method) will be at the centre of our developments
later on.

The problem can be summarised as follows. We would like to plan the production and distribution
of a certain product, taking into account that the transportation cost is known (e.g., proportional
to the distance travelled), the factories (or source nodes) have a capacity limit, and the clients (or
demand nodes) have known demands. Figure 1.1 illustrates a small network with two factories,
located in San Diego and Seattle, and three demand points, located in New York, Chicago, and
Miami. Table 1.2 presents the data related to the problem.

Plants Clients

SE

SD

NY

CH

MI

Figure 1.1: Schematic illustration of a network with two source nodes and three demand nodes

Clients
Factory NY Chicago Miami Capacity
Seattle 2.5 1.7 1.8 350

San Diego 3.5 1.8 1.4 600
Demands 325 300 275 -

Table 1.2: Problem data: unit transportation costs, demands and capacities

To formulate a linear programming model representing the transportation problem, let i ∈ I =
{Seattle,San Diego} be the index set representing factories. Similarly, let j ∈ J = {New York,
Chicago,Miami}.
The decisions, in this case, are represented by xij , which represents the amount produced in factory
i and sent to client j. Such a distribution plan can then be assessed by its total transportation
cost, which is given by

min. z = 2.5x11 + 1.7x12 + 1.8x13 + 3.5x21 + 1.9x22 + 1.4x23.

The total transportation cost can be more generally represented as

min. z =
∑

i∈I

∑

j∈J

cijxij
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where cij is the unit transportation cost from i to j. The problem has two types of constraints
that must be observed, relating to the supply capacity and demand requirements. These can be
stated as the following linear constraints

x11 + x12 + x13 ≤ 350 (capacity limit in Seattle)

x21 + x22 + x23 ≤ 600 (capacity limit in San Diego)

x11 + x21 ≥ 325 (demand in New York)

x12 + x22 ≥ 300 (demand in Chicago)

x13 + x23 ≥ 275 (demand in Miami).

These constraints can be expressed in the more compact form
∑

j∈J

xij ≤ Ci, ∀i ∈ I (1.11)

∑

i∈I

xij ≥ Dj , ∀j ∈ J, (1.12)

where Ci is the production capacity of factory i ∈ I and Dj is the client demand j ∈ J . Notice
that the terms on the left-hand side in (1.11) account for the total production in each of the source
nodes i ∈ I. Analogously, in constraint (1.12), the term on the left-hand side accounts for the total
of the demand satisfied at the demand nodes j ∈ J .
Using an optimality argument, we can see that any solution for which, for any j ∈ J ,∑i∈I xij > Dj

can be improved by making
∑

i∈I xij = Dj . This shows that this constraint under these conditions
will always be satisfied as an equality constraint instead and could be replaced as such.

The complete transportation model for the example above can be stated as

min. z = 2.5x11 + 1.7x12 + 1.8x13 + 3.5x21 + 1.9x22 + 1.4x23

s.t.: x11 + x12 + x13 ≤ 350, x21 + x22 + x23 ≤ 600

x11 + x21 ≥ 325, x12 + x22 ≥ 300, x13 + x23 ≥ 275

x11, . . . , x23 ≥ 0.

Or, more compactly, in the so-called algebraic (or symbolic) form

min. z =
∑

i∈I

∑

j∈J

cijxij

s.t.:
∑

j∈J

xij ≤ Ci, ∀i ∈ I
∑

i∈I

xij ≥ Dj , ∀j ∈ J

xij ≥ 0,∀i ∈ I, ∀j ∈ J.

One interesting aspect to notice regarding algebraic forms is that they allow to represent the main
structure of the model while being independent of the instance being considered. For example,
regardless of whether the instance would have 5 or 50 nodes, the algebraic formulation is the same,
allowing for detaching the problem instance (in our case the 5 node network) from the model
itself. Moreover, most computational tools for mathematical programming modelling (hereinafter
referred to simply as modelling - such as JuMP.jl) empower the user to define the optimisation
model using this algebraic representation.
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Algebraic forms are the main form in which we will specify optimisation models. This abstraction
is a peculiar aspect of mathematical programming and is perhaps one of its main features, the
fact that one must formulate models for each specific setting, which can be done in multiple ways
and might have consequences for how well an algorithm performs computationally. Further in this
text, we will discuss this point in more detail.

1.2.3 Production planning (lot-sizing)

Production planning problems, commonly referred to as lot-sizing problems in contexts related
to industrial engineering, consider settings where a planning horizon is taken into consideration.
Differently from the previous examples, lot-sizing problems allow for the consideration of a time
flow aspect, in which production that takes place in the past can be “shifted” to a future point
in time by means of inventories (i.e., stocks). Inventories are important because they allow for
taking advantage of different prices at different time periods, circumventing production capacity
limitations, or preparing against uncertainties in the future (e.g., uncertain demands).

The planning horizon is represented by a collection of chronologically ordered elements t ∈ {1, . . . , T}
representing a set of uniformly-sized time periods (e.g., months or days). Then, let us define the
decision variables pt as the amount produced in period t and kt the amount stored in period t,
which is available for use in periods t′ > t. These decisions are governed by two costs: Pt, ∀t ∈ T ,
representing the production cost in each time period t and the unit holding cost H, that is, how
much it costs to hold one unit of product for one time period.

Our objective is to satisfy the demands Dt, ∀t ∈ T , at the minimum possible cost. Figure 1.2
provides a schematic representation of the process to be modelled. Notice that each node represents
a material balance to be considered, that is, at any period t, the total produced plus the amount
held in inventory from the previous period (t− 1) must be the same as the amount used to satisfy
the demand plus the amount held in inventory for the next period (t+ 1).

Period 1 Period 2
...

Period T

p1 p2 pt pT

D1 D2 Dt DT

t = 1 t = 2 . . . t = T
k1 k2 kT−1

Figure 1.2: A schematic representation of the lot-sizing problem. Each node represents the material
balance at each time period t.

The production planning problem can be formulated as

min.
∑

t∈T

[Ctpt +Hst]

s.t.: pt + kt−1 = Dt + kt, ∀t ∈ T
pt, ht ≥ 0, ∀t ∈ T.

A few points must be considered carefully when dealing with lot-sizing problems. First, one must
carefully consider boundary condition, that is, what the model is deciding in time periods t = T
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and what is the initial inventory (carried from t = 0). While the former will be seen by the model
as the “end of the world”, leading to the realization that optimal inventory levels at period |T |
must be zero, the latter might considerably influence how much production is needed during the
planning horizon T . These must be observed and handled accordingly.

1.3 The geometry of LPs - graphical method

Let us now focus our attention to the geometry of linear programming (LP) models. As will become
evident later on, LP models have a very peculiar geometry that is exploited by one of the most
widespread methods to solve them, the simplex method.

1.3.1 The graphical method

In order to create a geometric intuition, we will utilise a graphical representation of the resource
allocation example (the paint factory problem). But first, recall the general LP formulation (1.2)–
(1.4), where A is an m× n matrix, and b, c, and x have suitable dimensions. Let ai be one of the
m rows of A. Notice each constraint a⊤i x ≤ bi defines a closed half-space, with boundary defined
by a hyperplane a⊤i x = bi, ∀i ∈ I = {1, . . . ,m} (we will return to these definitions in chapter 2;
for now, just bear with me if these technical terms are unfamiliar to you). By plotting all of these
closed half-spaces, we can see that their intersection will form the feasible region of the problem,
that is, the (polyhedral) set of points that satisfy all constraints Ax ≤ b. Figure 1.3 provides a
graphical representation of the feasible region of the paint factory problem.

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

6x1 + 4x2 24

x1 + 2x2 6

x1 + x2 1

x2 2

(a)

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

6x1 + 4x2 24

x1 + 2x2 6

x1 + x2 1

x2 2

(b)

Figure 1.3: The feasible region of the paint factory problem (in Figure 1.3b), represented as the
intersection of the four closed-half spaces formed by each of the constraints (as shown in Figure
1.3a). Notice how the feasible region is a polyhedral set in R2, as there are two decision variables
(x1 and x2).
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We can use this visual representation to find the optimal solution for the problem, that is, the point
(x1, x2) within the feasible set such that the objective function value is maximal (recall that the
paint factory problem is a maximisation problem). For that, we must consider how the objective
function z = c⊤x can be represented in the (x1, x2)-plane. Notice that the objective function
forms a hyperplane in (x1, x2, z) ⊂ R3, of which we can plot level curves (i.e., projections) onto
the (x1, x2)-plane. Figure 1.4a shows the plotting of three level curves, for z = 5, 10, and 15.

This observation provides us with a simple graphical method to find the optimal solution to linear
problems. One must simply sweep the feasible region in the direction of the gradient ∇z =
[ ∂z
∂x1

, ∂z
∂x2

]⊤ = [5, 4]⊤ (or in its opposite direction, if minimising) until one last point (or edge) of
contact remains, meaning that the whole of the feasible region is behind that furthermost level
curve. Figure 1.4b illustrates the process of finding the optimal solution for the paint factory
problem.
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z = 5
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z = 15

z

x * = (3, 1.5)
z * = 21

(b)

Figure 1.4: Graphical representation of some of the level curves of the objective function z =
5x1 + 4x2. Notice that the constant gradient vector ∇z = (5, 4)⊤ points to the direction in which
the level curves increase in value. The optimal point is represented by x∗ = (3, 1.5)⊤ with the
furthermost level curve being that associated with the value z∗ = 21

The graphical method is important because it allows us to notice several key features that will be
used later on when we analyse a method that can search for optimal solutions for LP problems. The
first is related to the notion of active or inactive constraints. We say that a constraint is active at
a given point x if the constraint is satisfied as equality at the point x. For example, the constraints
6x1 + 4x2 ≤ 24 and x1 + 2x2 ≤ 6 are active at the optimum x∗ = (3, 1.5), since 6(3) + 4(1.5) = 24
and 3 + 2(1.5) = 6. An active constraint indicates that the resource (or requirement) represented
by that constraint is being fully depleted (or minimally satisfied).

Analogously, inactive constraints are constraints that are satisfied as strict inequalities at the
optimum. For example, the constraint −x1+x2 ≤ 1 is inactive at the optimum, as −(3)+1.5 < 1.
In this case, an inactive constraint represents a resource (or requirement) that is not fully depleted
(or is over-satisfied).
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1.3.2 Geometrical properties of LPs

One striking feature concerning the geometry of LPs that becomes evident when we analyse the
graphical method is that the number of candidate solutions is not infinite, but instead, only a finite
set of points are potential candidates for optimal solution. This is because the process of sweeping
in the direction of the gradient of the (linear) objective function will, in general, lead to a unique
solution that must lie on a vertex of the polyhedral feasible set. The only exceptions are either
when the gradient ∇z happens to be perpendicular to a facet of the polyhedral set (and in the
direction of the sweeping) or in case the sweeping direction is not bounded by some of the facets
of the polyhedral set. These exceptional cases will be discussed in more detail later on, but, as we
will see, the observation still holds.

In the graphical example (i.e., in R2), notice how making n = 2 constraints active out of m = 4
constraints forms a vertex. However, not all vertices are feasible. This allows us to devise a
mechanism to describe vertices by activating n of the m constraints at a time, in which we could
exhaustively test and select the best (i.e., that with the largest objective function value). The issue,
however, is that the number of candidates increases exponentially with the number of constraints
and variables of the problem, which indicates this would quickly become computationally infeasible.
As we will see, it turns out that this search idea can be made surprisingly efficient and is, in fact,
the underlying framework of the simplex method. However, there are indeed artificially engineered
worst-case settings where the method does need to consider every single vertex.

The simplex method exploits the above idea to heuristically search for solutions by selecting n
constraints to be active from the m constraints available. Starting from an initial selection of
constraints to be active, it selects one inactive constraint to activate and one to deactivate in a
way that improvement in the objective function can be observed while feasibility is maintained.
This process repeats until no improvement can be observed. In such a case, the geometry of the
problem guarantees (global) optimality. In the following chapters, we will concentrate on defining
algebraic objects that we will use to develop the simplex method.
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1.4 Exercises

Exercise 1.1: Introduction to JuMP

Use the Julia package JuMP.jl to implement the problems below and find the optimal solution.
For the two-dimensional problems, use Plots.jl to illustrate the feasible region and the optimal
solution.

(a)

max. x1 + 2x2 + 5x3

s.t.: x1 − x2 − 3x3 ≥ 5

x1 + 3x2 − 7x3 ≤ 10

x1 ≤ 10

x1, x2 ≥ 0.

(b)

max. 2x1 + 4x2

s.t.: x1 + x2 ≤ 5

− x1 + 3x2 ≤ 1

x1 ≤ 5

x2 ≤ 5

x1, x2 ≥ 0.

(c)

min. − 5x1 + 10x2 + x3 + 2000x4

s.t.: x1 − x2 ≤ 1500

4x2 − x3 ≤ 5000x4

x1 + 3x2 ≥ 1000

x1 ≤ 10000

x1, x2 ∈ R, x3 ≤ 0, x4 ∈ {0, 1} .

(d)

max. 5x1 + 3x2

s.t.: x1 + 5x2 ≤ 3

3x1 − x2 ≤ 5

x1 ≤ 2

x2 ≤ 30

x1, x2 ≥ 0.
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Plants Clients

Austin

Buffalo

Chicago

Denver

Erie

Clients
Factory Chicago Denver Eire
Buffalo 4 9 8 25
Austin 10 7 9 600

Demands 15 12 13 -

Table 1.3: Problem data: unit transportation costs, demands and capacities

Exercise 1.2: Transportation problem [4]

Consider the following network, where the supplies from the Austin and Buffalo nodes need to
meet the demands in Chicago, Denver, and Erie. The data for the problem is presented in table
below.

Solve the transportation problem, finding the minimum cost transportation plan.

Exercise 1.3: Capacitated transportation

The Finnish company Next has a logistics problem in which used oils serve as raw material to
form a class of renewable diesel. The supply chain team need to organise, to a minimal cost, the
acquisition of two types of used oils (products p1 and p2) from three suppliers (supply nodes s1,
s2, and s3) to feed the line of three of their used oils processing factories (demand nodes d1, d2,
and d3). As the used oils are the byproduct of the supplier’s core activities, the only requirement
is that Next need to fetch the amount of oil and pay the transportation costs alone.

The oils have specific conditioning and handling requirements, so transportation costs vary between
p1 and p2. Additionally, not all the routes (arcs) between suppliers and factories are available as
some distances are not economically feasible. Table 1.4a shows the volume requirement of the two
types of oil from each supply and demand node, and table 1.4b show the transportation costs for
each oil type per L and the arc capacity. Arcs with “-” for costs are not available as transportation
routes.

Find the optimal oil acquisition plan for Next, i.e., solve its transportation problem to the minimum
cost.



1.4. Exercises 25

node p1 p2
s1 / d1 80 / 60 400 / 300
s2 / d2 200 / 100 1500 / 1000
s3 / d3 200 / 200 300 / 500

(a) Supply availability and demand per oil
type [in L]

d1 d2 d3
p1/p2 (cap) p1/p2 (cap) p1/p2 (cap)

s1 5/- (∞) 5/18 (300) -/- (0)
s2 8/15 (300) 9/12 (700) 7/14 (600)
s3 -/- (0) 10/20 (∞) 8/- (∞)

(b) Arcs costs per oil type [in e per L] and arc capacities
[in L]

Table 1.4: Supply chain data

Exercise 1.4: The farmer’s problem [2]

Consider a farmer who produces wheat, corn, and sugar beets on his 500 acres of land. During the
winter, the farmer wants to decide how much land to devote to each crop.

The farmer knows that at least 200 tons (T) of wheat and 240T of corn are needed for cattle feed.
These amounts can be raised on the farm or bought from a wholesaler. Any production in excess
of the feeding requirement would be sold. Over the last decade, mean selling prices have been $
170 and $ 150 per ton of wheat and corn, respectively. The purchase prices are 40 % more than
this due to the wholesaler’s margin and transportation costs. The planting costs per acre of wheat
and corn are $ 150 and $ 230, respectively.

Another profitable crop is sugar beet, which he expects to sell at $36/T; however, the European
Commission imposes a quota on sugar beet production. Any amount in excess of the quota can
be sold only at $10/T. The farmer’s quota for next year is 6000T. The planting cost per acre of
sugar beet is $ 260.

Based on past experience, the farmer knows that the mean yield on his land is roughly 2.5T, 3T,
and 20T per acre for wheat, corn, and sugar beets, respectively.

Based on the data, build up a model to help the farmer allocate the farming area to each crop and
how much to sell/buy of wheat, corn, and sugar beets considering the following cases.

(a) The predictions are 100% accurate and the mean yields are the only realizations possible.

(b) There are three possible equiprobable scenarios (i.e, each one with a probability equal to 1
3 ):

a good, fair, and bad weather scenario. In the good weather, the yield is 20% better than the
yield expected whereas in the bad weather scenario it is reduced 20% of the mean yield. In
the regular weather scenario, the yield for each crop keeps the historical mean - 2.5T/acre,
3T/acre, and 20T/acre for wheat, corn, and sugar beets, respectively.

(c) What happens if we assume the same scenarios as item (b) but with probabilities 25%, 25%,
and 50% for good, fair, and bad weather, respectively? How the production plan changes
and why?

Exercise 1.5: Factory planning [6]

A factory makes seven products (PROD 1 to PROD 7) using the following machines: four grinders,
two vertical drills, three horizontal drills, one borer and one planer. Each product yields a certain
contribution to the profit (defined as $/unit selling price minus the cost of raw materials). These
quantities (in $/unit) together with the unit production times (hours) required on each process
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are given in Table 1.5. A dash indicates that a product does not require a process. There are also
marketing demand limitations on each product each month. These are given in Table 1.6.

PROD1 PROD2 PROD3 PROD4 PROD5 PROD6 PROD7
Profit 10 6 8 4 11 9 3
Grinding 1.5 2.1 – – 0.9 0.6 1.5
Vert. drilling 0.3 0.6 – 0.9 – 1.8 –
Horiz. drilling 0.6 – 2.4 – – – 1.8
Boring 0.15 0.09 – 0.21 0.3 – 0.24
Planing – – 0.03 – 0.15 – 0.15

Table 1.5: Product yields

PROD1 PROD2 PROD3 PROD4 PROD5 PROD6 PROD7
January 500 1000 300 300 800 200 100
February 600 500 200 0 400 300 150
March 300 600 0 0 500 400 100
April 200 300 400 500 200 0 100
May 0 100 500 100 1000 300 0
June 500 500 100 300 1100 500 60

Table 1.6: Maximum demand

It is possible to store up to 100 of each product at a time at a cost of $0.5 per unit per month.
There are no stocks at present, but it is desired to have a stock of 50 of each type of product at
the end of June.

The factory works six days a week with two shifts of 8h each day. Assume that each month consists
of only 24 working days. Also, there are no penalties for unmet demands. What is the factory’s
production plan (how much of which product to make and when) in order to maximise the total
profit?

Exercise 1.6: Linear classifier

Suppose we have a set of pre-classified data points xi in Rn, divided into two sets based on their
classification. For example, the data could be information on patients and the two sets would
correspond to patients who have or do not have a certain disease. Note that unlike so far, x is now
data, not a decision variable. Denote the respective index sets by I1 and I2, respectively. In order
to predict the class of a new point xnew, we want to infer a classification rule from the data.

Write a linear programming problem that finds the hyperplane ax = b such that if axnew > b, the
point xnew is predicted to be in class 1, and if axnew < b, the predicted class is 2. The hyperplane
should be optimal in the sense that it minimizes the sum of absolute deviations |axi − b| for the
misclassified points xi in the training data, that is, points on the wrong side of the hyperplane. In
Fig. 1.5, any red point xi, i ∈ I2 that is on the top/right of the line is on the wrong side and thus
accumulates the error, and similarly for blue points on the bottom/left of the line.
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Figure 1.5: Two sets of data points defined by two features, separated by a line ax = b
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Chapter 2

Basics of Linear Algebra

2.1 Basics of linear problems

As we have seen in the previous chapter, the feasible region of a linear programming problem can
be represented as

Ax ≤ b, (2.1)

where A is a m× n matrix, x is a n-dimensional column vector (or more compactly, x ∈ Rn), and
b is an m-dimensional column vector (b ∈ Rm). Notice that ≤ is considered component-wise. Also,
let dim(x) denote the dimension of vector x.

Before introducing the simplex method, let us first revisit a few key elements and operations that
we will use in the process. The first of them is presented in Definition 2.1.

Definition 2.1 (Matrix inversion). Let A be a square n× n matrix. A−1 is the inverse matrix of
A if it exists and AA−1 = I, where I is the (n× n) identity matrix.

Matrix inversion is the “kingpin” of linear (and nonlinear) optimisation. As we will see later on,
performing efficient matrix inversion operations (in reality, operations that are equivalent to matrix
inversion but that can exploit the matrix structure to be made faster) is of utmost importance for
developing a linear optimisation solver.

Another important concept is the notion of linear independence. We formally state when a collec-
tion of vectors is said to be linearly independent (or dependent) in Definition 2.2.

Definition 2.2 (Linearly independent vectors). The vectors {xi}ki=1 ∈ Rn are linearly dependent

if there exist real numbers {ai}ki=1 with ai ̸= 0 for at least one i ∈ {1, . . . , k} such that

k∑

i=1

aixi = 0;

otherwise, {xi}ki=1 are linearly independent.

In essence, for a collection of vectors to be linearly independent, it must be so that none of the
vectors in the collection can be expressed as a linear combination (that is, multiplying the vectors
by nonzero scalars and adding them) of the others. Analogously, they are said to be linearly
dependent if one vector in the collection can be expressed as a linear combination of the others.

This is simpler to see in R2. Two vectors are linearly independent if one cannot obtain one by
multiplying the other by a constant, which effectively means that they are not parallel. If the two
vectors are not parallel, then one of them must have a component in a direction that the other

29
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x1 x2

x1
x2

x3

Figure 2.1: Linearly independent (top) and dependent (bottom) vectors in R2. Notice how, in the
bottom picture, any of the vectors can be obtained by appropriately scaling and adding the other
two

vector cannot “reach”. The same idea can be generalised to any n-dimensional space. Also, that
explains why one can only have up to n independent vectors in Rn. Figure 2.1 illustrates this idea.

Theorem 2.3 summarises results that we will utilise in the upcoming developments. These are
classical results from linear algebra and the proof is left as an exercise.

Theorem 2.3 (Inverses, linear independence, and solving Ax = b). Let A be a m × m matrix.
Then, the following statements are equivalent:

1. A is invertible

2. A⊤ is invertible

3. The determinant of A is nonzero

4. The rows of A are linearly independent

5. The columns of A are linearly independent

6. For every b ∈ Rm, the linear system Ax = b has a unique solution

7. There exists some b ∈ Rm such that Ax = b has a unique solution.

Notice that Theorem 2.3 establishes important relationships between the geometry of the matrix
A (its rows and columns) and consequences it has to our ability to calculate its inverse A−1 and,
consequently, solve the system Ax = b, to which the solution is obtained as x = A−1b. Solving
linear systems of equations will turn out to be the most important operation in the simplex method.

2.1.1 Subspaces and bases

Let us define some objects that we will frequently refer to. The first of them is the notion of
a subspace. A subspace of Rn is a set comprising all linear combinations of its own elements.
Specifically, if S is a subspace, then

S = {ax+ by : x, y ∈ S; a, b ∈ R} .
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A related concept is the notion of a span. A span of a collection of vectors {xi}ki=1 ∈ Rn is the
subspace of Rn formed by all linear combinations of such vectors, i.e.,

span(x1, . . . , xk) =

{
y =

k∑

i=1

aixi : ai ∈ R, i ∈ {1, . . . , k}
}
.

Notice how the two concepts are related: the span of a collection of vectors forms a subspace.
Therefore, a subspace can be characterised by the collection of vectors whose span forms it. In
other words, the span of a set of vectors is the subspace formed by all points we can represent by
some linear combination of these vectors.

The missing part in this is the notion of a basis. A basis of the subspace S ⊆ Rn is a collection of
vectors {xi}ki=1 ∈ Rn that are linearly independent such that span(x1, . . . , xk) = S.

Notice that a basis is a “minimal” set of vectors that form a subspace. You can think of it in light
of the definition of linearly independent vectors (Definition 2.2); if a vector is linearly dependent
to the others, it is not needed for characterising the subspace that the vectors span since it can be
represented by a linear combination of the other vectors (and thus is in the subspace formed by
the span of the other vectors).

The above leads us to some important realisations:

1. All bases of a given subspace S have the same dimension. Any extra vector would be linearly
dependent to those vectors that span S. In that case, we say that the subspace has size (or
dimension) k, the number of linearly independent vectors forming the basis of the subspace.
We can overload the notation dim(S) to represent the dimension of the subspace S.

2. If the subspace S ⊂ Rn is formed by a basis of size m < n, we say that S is a proper subspace
with dim(S) = m, because it is not the whole Rn itself, but a space contained within Rn.
For example, two linearly independent vectors form (i.e., span) a hyperplane in R3; this
hyperplane is a proper subspace since dim(S) = m = 2 < 3 = n.

3. If a proper subspace has dimensionm < n, then it means that there are n−m directions in Rn

that are perpendicular to the subspace and to each other. That is, there are nonzero vectors ai
that are orthogonal to each other and to S. Or, equivalently, a⊤i x = 0 for i = n−m+1, ..., n.
Referring to the R3, if m = 2, then there is a third direction that is perpendicular to (or not
in) S. Figure 2.2 can be used to illustrate this idea. Notice how one can find a vector, say
x3 that is perpendicular to S. This is because the whole space is R3, but S has dimension
m = 2 (or dim(S) = 2).

Theorem 2.4 builds upon the previous points to guarantee the existence of bases and propose a
procedure to form them.

Theorem 2.4 (Forming bases from linearly independent vectors). Suppose that S = span(x1, . . . , xk)
has dimension m ≤ k. Then

1. There exists a basis of S consisting of m of the vectors x1, . . . , xk.

2. If k′ ≤ m and x1, . . . , xk′ ∈ S are linearly independent, we can form a basis for S by starting
with x1, . . . , xk′ and choosing m− k′ additional vectors from x1, . . . , xk.

Proof. Notice that, if every vector xk′+1, . . . , xk can be expressed as a linear combination of
x1, . . . xk′ , then every vector in S is also a linear combination of x1, . . . , xk′ . Thus, x1, . . . , xk′
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x1
S x1

x2

S

Figure 2.2: One- (left) and two-dimensional subspaces (right) in R3.

form a basis to S with m = k′. Otherwise, at least one of the vectors in xk′+1, . . . , xk is linearly
independent from x1, . . . , xk′ . By picking one such vector, we now have k′ + 1 of the vectors
xk′+1, . . . , xk that are linearly independent. If we repeat this process m−k′ times, we end up with
a basis for S.

Our interest in subspaces and bases spans (pun intended!) from their usefulness in explaining how
the simplex method works under a purely algebraic (as opposed to geometric) perspective. For
now, we can use the opportunity to define some “famous” subspaces which will often appear in
our derivations.

Let A be am×n matrix. The column space of A consists of the subspace spanned by the n columns
of A and has dimension m (recall that each column has as many components as the number of rows
and is thus a m-dimensional vector). Likewise, the row space of A is the subspace in Rn spanned
by the rows of A. Finally, the null space of A, often denoted as null(A) = {x ∈ Rn : Ax = 0},
consist of the vectors that are perpendicular to the row space of A.

One important notion related to those subspaces is their size. Both the row and the column space
have the same size, which is the rank of A. If A is full rank, than it means that

rank(A) = min {m,n} .

Finally, the size of the null space of A is given n− rank(A), which is in line with Theorem 2.4.

2.1.2 Affine subspaces

A related concept is that of an affine subspace. Differently from linear subspaces (to which we have
been referring to simply as subspaces), affine subspaces encode some form of translation, such as

S = S0 + x0 = {x+ x0 : x ∈ S0} .

Affine subspaces differ from linear subspaces because they do not contain the origin (recall that
the definition of subspaces allows for a and b to be zero). Nevertheless, S has the same dimension
as S0.

Affine subspaces give a framework for representing linear programming problems algebraically.
Specifically, let A be a m× n matrix with m < n and b a m-dimensional vector. Then, let

S = {x ∈ Rn : Ax = b} . (2.2)

As we will see, the feasible set of any linear programming problem can be represented as an
equality-constrained equivalent of the form of (2.2) by adding slack variables to the inequality
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x0
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S
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Figure 2.3: The affine subspace S generated by x0 and null(a). Notice that all vectors in S,
exemplified by x1 and x2 are perpendicular (i.e., have null dot product) to a

constraints, meaning that we will always have that m < n. Now, assume that x0 ∈ Rn is such that
Ax0 = b. Then, we have that

Ax = Ax0 = b⇒ A(x− x0) = 0.

Thus, x ∈ S if and only if the vector (x− x0) belongs to null(A), the nullspace of A. Notice that
the feasible region S can be also defined as

S = {x+ x0 : x ∈ null(A)} ,

being thus an affine subspace with dimension n −m, if A has m linearly independent rows (i.e.,
rank(A) = m). This will have important implications in the way we can define multiple bases for
S from the n vectors in the column space and what implications it has for the feasibility of the
whole problem. Figure 2.3 illustrates this concept for a single-row matrix a. For a multiple-row
matrix A, S becomes the intersection of multiple hyperplanes.

2.2 Convex polyhedral set

The feasible region of any linear programming problem is a convex polyhedral set, which we will
simply refer to as a polyhedral set. That is because we are interested in polyhedral sets that are
formed by an intersection of a finite number of half-spaces and can thus only be convex (as we will
see in a moment), creating redundancy in our context but maybe some confusion overall.

2.2.1 Hyperplanes, half-spaces and polyhedral sets

Definition 2.5 formally states the structure that we refer to as polyhedral sets.

Definition 2.5 (Polyhedral set). A polyhedral set is a set that can be described as

S = {x ∈ Rn : Ax ≥ b} ,

where A is an m× n matrix and b is a m-vector.

One important thing to notice is that polyhedral sets, as defined in Definition 2.5, as formed by
the intersection multiple half-spaces. Specifically, let {ai}mi=1 be the rows of A. Then, the set S
can be described as

S =
{
x ∈ Rn : a⊤i x ≥ bi, i = 1, . . . ,m

}
, (2.3)
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which represents exactly the intersection of the half-spaces a⊤i x ≥ bi. Furthermore, notice that the
hyperplanes a⊤i x = bi, ∀i ∈ {1, . . . ,m}, are the boundaries of each hyperplane, and thus describe
one of the facets of the polyhedral set. Figure 2.4 illustrates a hyperplane forming two half-spaces
(also polyhedral sets) and how the intersection of five half-spaces form a (bounded) polyhedral set.

a

a⊤x = b

a⊤x > b

a⊤x < b

a1

a2

a3

a4

a5

a
⊤ 1
x
=
b 1

a⊤3 x = b3

a⊤2 x = b2

a⊤4 x = b4

a⊤5 x = b5

Figure 2.4: A hyperplane and its respective halfspaces (left) and the polyhedral set{
x ∈ R2 : axi ≥ bi, i = 1, . . . , 5

}
(right).

You might find authors referring to bounded polyhedral sets as polytopes. However, this is not used
consistently across references, sometimes with switched meanings (for example, using polytope to
refer to a set defined as in Definition 2.5 and using polyhedron to refer to a bounded version of
S). In this text, we will only use the term polyhedral set to refer to sets defined as in Definition
2.5 and use the term bounded whenever applicable.

Also, it may be useful to formally define some elements in polyhedral sets. For that, let us consider
a hyperplane H =

{
x ∈ Rn : a⊤x = b

}
, with a ∈ Rn and b ∈ R. Now consider the set F = H ∩ S.

This set is known as a face of a polyhedral set. If the face F has dimension zero, then F is called
a vertex. Analogously, if dim(F ) = 1, then F is called an edge. Finally, if dim(F ) = dim(S)− 1,
then F is called a facet. Notice that in R3, facets and faces are the same, whenever the face is not
an edge or a vertex.

2.2.2 Convexity of polyhedral sets

As will see in more detail in Part 2 of this book, convexity plays a crucial role in optimisation,
being the “watershed” between easy and hard optimisation problems. One of the main reasons
why we can solve challenging linear programming problems is due to the inherent convexity of
polyhedral sets.

Let us first define the notion of convexity for sets, which is stated in Definition 2.6

Definition 2.6 (Convex set). A set S ⊆ Rn is convex if, for any x1, x2 ∈ S and any λ ∈ [0, 1],
we have that x = λx1 + (1− λ)x2 ∈ S.

Definition 2.6 leads to a simple geometrical intuition: for a set to be convex, the line segment
connecting any two points within the set must lie within the set. This is illustrated in Figure 2.5.

Associated with the notion of convex sets are two important elements we will refer to later when
we discuss linear problems that embed integrality requirements. The first is the notion of a convex
combination, which is already contained in Definition 2.6, but can be generalised for an arbitrary
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Figure 2.5: Two convex sets (left and middle) and one nonconvex set (right)
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Figure 2.6: The convex hull of two points is the line segment connecting them (left); The convex
hull of three (centre) and six (right) points in R2

number of points. The second consists of convex hulls, which are sets formed by combining the
convex combinations of all elements within a given set. As one might suspect, convex hulls are
always convex sets, regardless of whether the original set from which the points are drawn from is
convex or not. These are formalised in Definition 2.7 and illustrated in Figure 2.6.

Definition 2.7 (Convex combinations and convex hulls). Let x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R
such that λi ≥ 0 for i = 1, . . . , k and

∑k
i=1 λi = 1. Then

1. x =
∑k

i=1 λixi is a convex combination of {xi}ki=1 ∈ Rn;

2. The convex hull of {xi}ki=1 ∈ Rn, denoted conv(x1, . . . , xk), is the set of all convex combi-

nations of {xi}ki=1 ∈ Rn.

We are now ready to state the result that guarantees the convexity of polyhedral sets of the form

S = {x ∈ Rn : Ax ≤ b} .

Theorem 2.8 (Convexity of polyhedral sets). The following statements are true:

1. The intersection of convex sets is convex

2. Every polyhedral set is a convex set

3. A convex combination of a finite number of elements of a convex set also belongs to that set

4. The convex hull of a finite number of elements is a convex set.

Proof. We provide the proof for each of the statements individually.

1. Let Si, for i ∈ I = {1, . . . , n}, be a collection of n convex sets and suppose that x, y ∈ ⋂i∈I Si.
Let λ ∈ [0, 1]. Since Si are convex and x, y ∈ Si for all i ∈ I, λx+ (1− λ)y ∈ Si for all i ∈ I
and, thus, λx+ (1− λ)y ∈ ⋂i∈I Si.
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Figure 2.7: Illustration of statement 1 (left), 2 (centre), and 3 and 4 (right)

2. Let a ∈ Rn and b ∈ R. Let x, y ∈ Rn, such that a⊤x ≥ b and a⊤y ≥ b. Let λ ∈ [0, 1]. Then
a⊤(λx + (1 − λ)y) ≥ λb + (1 − λ)b = b, showing that half-spaces are convex. The result
follows from combining this with (1).

3. By induction. Let S be a convex set and assume that the convex combination of x1, . . . , xk ∈
S also belongs to S. Consider k+1 elements x1, . . . , xk+1 ∈ S and λ1, . . . , λk+1 with λi ∈ [0, 1]

for i = 1, . . . , k + 1 and
∑k+1

i=1 λi = 1 and λk+1 ̸= 1 (without loss of generality). Then

k+1∑

i=1

λixi = λk+1xk+1 + (1− λk+1)

k∑

i=1

λi
1− λk+1

xi. (2.4)

Notice that
∑k

i=1
λi

1−λk+1
= 1. Thus, using the induction hypothesis,

∑k
i=1

λi

1−λk+1
xi ∈

S. Considering that S is convex and using (2.4), we conclude that
∑k+1

i=1 λk+1xk+1 ∈ S,
completing the induction.

4. Let S = conv(x1, . . . , xk). Let y =
∑k

i=1 αixi and z =
∑k

i=1 βixi be such that y, z ∈ S,

αi, βi ≥ 0, and
∑k

i=1 αi =
∑k

i=1 βi = 1. Let λ ∈ [0, 1]. Then

λy + (1− λ)z = λ

k∑

i=1

αixi + (1− λ)
k∑

i=1

βixi =

k∑

i=1

(λαi + (1− λ)βi)xi. (2.5)

Since
∑k

i=1 λαi + (1 − λ)βi = 1 and λαi + (1 − λ)βi ≥ 0 for i = 1, . . . , k, λy + (1 − λ)z is
a convex combination of x1, . . . , xk and, thus, λy + (1 − λ)z ∈ S, showing the convexity of
S.

Figure 2.7 illustrates some of the statements represented in the proof. For example, the intersection
of the convex sets is always a convex set. One should notice however that the same does not apply to
the union of convex sets. Notice that statement 2 proves that polyhedral sets as defined according
to Definition 2.5 are convex. Finally the third figure on the right illustrates the convex hull of four
points as a convex polyhedral set containing the lines connecting any two points within the set.

We will halt our discussion about convexity for now and return to it in deeper detail in Part 2. We
finish by showing a simple yet very powerful result, which states that the presence of convexity is
what allows us to conclude that a locally optimal solution returned by an optimisation algorithm
applied to a linear programming problem is indeed optimal for the problem at hand. It so turns out
that, in the context of linear programming, convexity is a given since linear functions are convex
by definition and the feasibility set of linear programming is also convex (as we have just shown
in 2.8).

Theorem 2.9 (Global optimality for convex problems). Let f : Rn → R be a convex function,
that is, f(λx1+(1−λ)x2) ≤ λf(x1)+ (1−λ)f(x2), λ ∈ [0, 1], and let S ⊂ Rn be a convex set. Let
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x∗ be an element of S. Suppose that x∗ is a local optimum for the problem of minimising f(x) over
S. That is, there exists some ϵ > 0 such that f(x∗) ≤ f(x) for all x ∈ S for which ∥x − x∗∥ ≤ ϵ.
Then, x∗ is globally optimal, meaning that f(x∗) ≤ f(x) for all x ∈ S.

Proof. Suppose, in order to derive a contradiction that f(x) < f(x∗) for some x ∈ S. Using
Definition 2.6, we have that

f(λx+ (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗) < λf(x∗) + (1− λ)f(x∗) = f(x∗), ∀λ ∈ [0, 1].

We see that the strict inequality f(λx + (1 − λ)x∗) < f(x∗) holds for any point λx + (1 − λ)x∗,
including those with ∥λx+(1−λ)x∗−x∗∥ ≤ ϵ. Our assumption thus contradicts the local optimality
of x∗, and this proves that f(x) ≥ f(x∗) for all x ∈ S.

2.3 Extreme points, vertices, and basic feasible solutions

Now we focus on the algebraic representation of the most relevant geometric elements in the
optimisation of linear programming problems. As we have seen in the graphical example in the
previous chapter, the optimum of linear programming problems is generally located at the vertices
of the feasible set. Furthermore, such vertices are formed by the intersection of n constraints (in a
n-dimensional space, which comprises constraints that are active (or satisfied at the boundary of
the half-space of said constraints).

First, let us formally define the notions of vertex and extreme point. Although in general these can
refer to different objects, we will see that in the case of linear programming problems, if a point is
a vertex, then it is an extreme point as well, the converse also being true.

Definition 2.10 (Vertex). Let P be a convex polyhedral set. The vector x ∈ P is a vertex of P if
there exists some c such that c⊤x < c⊤y for all y ∈ P with y ̸= x.

Definition 2.11 (Extreme points). Let P be a convex polyhedral set. The vector x ∈ P is an
extreme point of P if there are no two vectors y, z ∈ P (different than x) such that x = λy+(1−λ)z,
for any λ ∈ [0, 1].

Figure 2.8 provides an illustration of the Definitions 2.10 and 2.11. Notice that the definition of a
vertex involves an additional hyperplane that, once placed on a vertex point, strictly contains the
whole polyhedral set in one of the half-spaces it defines, except for the vertex itself. On the other
hand, the definition of an extreme point only relies on convex combinations of elements in the set
itself.

Definition 2.10 also hints an important consequence for linear programming problems. As we seen
from Theorem 2.8, P is convex, which guarantees that P is contained in the half-space c⊤y > c⊤x.
This implies that c⊤x ≤ c⊤y,∀y ∈ P , which is precisely the condition that x must satisfy to be
the minimum for the problem min. x

{
c⊤x : x ∈ P

}
.

Now we focus on the description of active constraints from an algebraic standpoint. For that, let
us first generalise our setting by considering all possible types of linear constraints. That is, let us
consider the convex polyhedral set P ⊂ Rn, formed by the set of inequalities and equalities:

a⊤i x ≥ b, i ∈M1,

a⊤i x ≤ b, i ∈M2,

a⊤i x = b, i ∈M3.
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Figure 2.8: Representation of a vertex (left) and a extreme point (right)

Definition 2.12 (Active (or binding) constraints). If a vector x satisfies a⊤i x = bi for some
i ∈M1,M2, or M3, we say that the corresponding constraints are active (or binding).

Definition 2.12 formalises the notion of active constraints. This is illustrated in Figure 2.9, where
the polyhedral set P =

{
x ∈ R3 : x1 + x2 + x3 = 1, xi ≥ 0, i = 1, 2, 3

}
is represented. Notice that,

while points A, B, C and D have 3 active constraints, E only has 2 active constraints (x2 = 0 and
x1 + x2 + x3 = 1).

x1

x2

x3

P

A

B

C

D
E

Figure 2.9: Representation of P in R3.

Theorem 2.13 sows a thread between having a collection of active constraints forming a vertex
and being able to describe it as a basis of a subspace that is formed by the vectors ai that form
these constraints. This link is what will allow us to characterise vertices by their forming active
constraints.

Theorem 2.13 (Properties of active constraints). Let x ∈ Rn and I =
{
i ∈M1 ∪M2 ∪M3 : a⊤i x = bi

}
.

Then, the following are equivalent:

1. There exists n vectors in {ai}i∈I that are linearly independent.

2. The span({ai}i∈I) spans Rn. That is, every x ∈ Rn can be expressed as a linear combination
of {ai}i∈I .

3. The system of equations
{
a⊤i x = bi

}
i∈I

has a unique solution.

Proof. Suppose that {ai}i∈I spans Rn, implying that the span({ai}i∈I) has dimension n. By
Theorem 2.4 (part 1), n of these vectors form a basis for Rn and are, thus, linearly independent.
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Moreover, they must span Rn and therefore every x ∈ Rn can be expressed as a combination of
{ai}i∈I . This connects (1) and (2).

Assume that the system of equations
{
a⊤i x = bi

}
i∈I

has multiple solutions, say x1 and x2. Then,

the nonzero vector d = x1−x2 satisfies a⊤i d = 0 for all i ∈ I. As d is orthogonal to every ai, i ∈ I,
d cannot be expressed as a combination of {ai}i∈I and, thus, {ai}i∈I do not span Rn.

Conversely, if {ai}i∈I do not span Rn, choose d ∈ Rn that is orthogonal to span({ai}i∈I). If

x satisfies
{
a⊤i x = bi

}
i∈I

, so does
{
a⊤i (x+ d) = bi

}
i∈I

, thus yielding multiple solutions. This

connects (2) and (3).

Notice that Theorem 2.13 implies that there are (at least) n active constraints (ai) that are linearly
independent at x. This is the reason why we will refer to x, and any vertex-forming solution, as
a basic solution, of which we will be interested in those that are feasible, i.e., that satisfy all
constraints i ∈M1 ∪M2 ∪M3. Definition 2.14 provides a formal definition of these concepts.

Definition 2.14 (Basic feasible solution (BFS)). Consider a convex polyhedral set P ⊂ Rn defined
by linear equality and inequality constraints, and let x ∈ Rn.

1. x is a basic solution if

(a) All equality constraints are active,

(b) Out of the constraints active at x, n of them are linearly independent, and

(c) x is the unique solution of the linear system formed by n linearly-independent active
constraints.

2. if x is a basic solution satisfying all constraints, we say x is a basic feasible solution.

Figure 2.10 provides an illustration of the notion of basic solutions, and show how only a subset
of the basic solutions are feasible. As one might infer, these will be the points of interest in out
future developments, as these are the candidates for optimal solution.

A

B

C

D
E

F
P

Figure 2.10: Points A to F are basic solutions; B,C,D, and E are BFS.

We finalise stating the main result of this chapter, which formally confirms the intuition we have
developed so far. That is, for convex polyhedral sets, the notion of vertices and extreme points
coincide, and these points can be represented as basic feasible solutions. This is precisely the
link that allows for considering the feasible region of linear programming problems under a purely
algebraic characterisation of the candidates for optimal solutions, those described uniquely by a
subset of constraints of the problem that is assumed to be active.
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Theorem 2.15 (BFS, extreme points and vertices). Let P ⊂ Rn be a convex polyhedral set and
let x ∈ P . Then, the following are equivalent

x is a vertex ⇐⇒ x is an extreme point ⇐⇒ x is a BFS.

Proof. Let P = {x ∈ Rn : a⊤i x ≥ bi, i ∈M1, a
⊤
i x = bi, i ∈M2}, and I =

{
i ∈M1 ∪M2 | a⊤i x = bi

}
.

1. (Vertex ⇒ Extreme point) Suppose x is a vertex. Then, there exists some c ∈ Rn such that
c⊤x < c⊤x, for every x ∈ P with x ̸= x (cf. Definition 2.10). Take y, z ∈ P with y, z ̸= x.
Thus c⊤x < c⊤y and c⊤x < c⊤z. For λ ∈ [0, 1], c⊤x < c⊤(λy + (1 − λ)z) implying that
x ̸= λy + (1− λ)z, and is thus an extreme point (cf. Definition 2.11).

2. (Extreme point ⇒ BFS) We will prove the contrapositive instead1. Suppose x ∈ P is not
a BFS. Then, there are no n linearly independent vectors within {ai}i∈I . Thus the vectors

{ai}i∈I lie in a proper subspace of Rn. Let the nonzero vector d ∈ Rn be such that a⊤i d = 0,
for all i ∈ I.
Let ϵ > 0, y = x+ ϵd, and z = x− ϵd. Notice that a⊤i y = a⊤i z = bi, for all i ∈ I. Moreover,
for i ̸= I, a⊤i x > bi and, provided that ϵ is sufficiently small (such that ϵ|a⊤i d| < a⊤i x − bi),
we have that a⊤i x ≥ bi for all i ∈ I. Thus y ∈ P , and by a similar argument, z ∈ P . Now,
by noticing that x = 1

2y +
1
2z, we see that x is not an extreme point.

3. (BFS ⇒ Vertex) Let x be a BFS. Define c =
∑

i∈I ai. Then

c⊤x =
∑

i∈I

a⊤i x =
∑

i∈I

bi.

Also, for any x ∈ P , we have that

c⊤x =
∑

i∈I

a⊤i x ≥
∑

i∈I

bi,

since a⊤i x ≥ bi for i ∈ M1 ∪M2. Thus, for any x ∈ P , c⊤x ≤ c⊤x, making x a vertex (cf.
Definition 2.10).

Some interesting insights emerge from the proof of Theorem 2.15, upon which we will build our
next developments. Once the relationship between being a vertex/extreme point and a BFS is
made, it means that x can be recovered as the unique solution of a system of linear equations,
these equations being the active constraints at that vertex. This means that the list of all optimal
solution candidate points can be obtained by simply looking at all possible combinations of n active
constraints, discarding those that are infeasible. This means that the number of candidates for
optimal solution is finite and can be bounded by

(
m
n

)
, where m = |M1 ∪M2|.

1Consider two propositions A and B. Then, we have that A ⇒ B ≡ ¬B ⇒ ¬A. The latter is known as the
contrapositive of the former.
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2.4 Exercises

Exercise 2.1: Polyhedral sets [1]

Which of the following sets are polyhedral sets?

a) {(x, y) ∈ R2 | x cos θ + y sin θ ≤ 1, θ ∈ [0, π/2], x ≥ 0, y ≥ 0}

b) {x ∈ R | x2 − 8x+ 15 ≤ 0}

c) The empty set (∅).

Exercise 2.2: Convexity of polyhedral sets

Prove the following theorem.

Theorem (Convexity of polyhedral sets). The following convexity properties about convex sets
can be said:

1. The intersection of convex sets is convex

2. Every polyhedral set is a convex set

3. A convex combination of a finite number of elements of a convex set also belongs to that set

4. The convex hull of a finite number of elements is a convex set.

Note: the proof of the theorem is proved in the notes. Use this as an opportunity to revisit the
proof carefully, and try to take as many steps without consulting the text as you can. This is a
great exercise to help you internalise the proof and its importance in the context of this book. I
strongly advise against blindly memorising it, as I suspect you will never (in my courses, at least)
be requested to recite the proof literally.

Exercise 2.3: Inverses, linear independence, and solving Ax = b

Prove the following theorem.

Theorem (Inverses, linear independence, and solving Ax = b). Let A be a m×m matrix. Then,
the following statements are equivalent:

1. A is invertible

2. A⊤ is invertible

3. The determinant of A is nonzero

4. The rows of A are linearly independent

5. The columns of A are linearly independent

6. For every b ∈ Rm, the linear system Ax = b has a unique solution

7. There exists some b ∈ Rm such that Ax = b has a unique solution.
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Exercise 2.4: Linear independence

a) According to Theorem 2.3, if the columns (or rows) of the m × m matrix A are linearly
independent, the system Ax = b has a unique solution for every vector b. Explain the
significance of this result in the context of linear optimization.

b) If the columns of A are not linearly independent, the system Ax = b has either no solution
or infinitely many solutions. Using the notions of span and proper subspace, explain why this
is the case.

c) Solve the following systems of equations. Which of these systems have an invertible coefficient
matrix?

2x1 + 3x2 + x3 = 12

x1 + 2x2 + 3x3 = 12

3x1 + x2 + 2x3 = 12

x1 + 2x2 + 4x3 = 6

2x1 + x2 + 5x3 = 6

x1 + 3x2 + 5x3 = 6

x1 + 2x2 + 4x3 = 5

2x1 + x2 + 5x3 = 4

x1 + 3x2 + 5x3 = 7

Exercise 2.5: Properties of active constraints

Let us consider the convex polyhedral set P ⊂ Rn, formed by the set of equalities and inequalities:

a⊤i x ≥ b, i ∈M1,

a⊤i x ≤ b, i ∈M2,

a⊤i x = b, i ∈M3.

Prove the following result.

Theorem (Properties of active constraints). Let x ∈ Rn and I =
{
i ∈M1 ∪M2 ∪M3 | a⊤i x = bi

}
.

Then, the following are equivalent:

1. There exists n vectors in {ai}i∈I that are linearly independent.

2. The span({ai}i∈I) spans Rn. That is, every x ∈ Rn can be expressed as a combination of
{ai}i∈I .

3. The system of equations
{
a⊤i x = bi

}
i∈I

has a unique solution.

Note: see Exercise 2.2.
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Exercise 2.6: Vertex, extreme points, and BFSs

Prove the following result.

Theorem (BFS, extreme points and vertices). Let P ⊂ Rn be a convex polyhedral set and let
x ∈ P . Then, the following are equivalent

1. x is a vertex;

2. x is a extreme point;

3. x is a BFS;

Note: see Exercise 2.2.

Exercise 2.7: Binding constraints

Given the linear program defined by the system of inequalities below,

max. 2x1 + x2

s.t.: 2x1 + 2x2 ≤ 9

2x1 − x2 ≤ 3

x1 − x2 ≤ 1

x1 ≤ 2.5

x2 ≤ 4

x1, x2 ≥ 0.

Assess the following points relative to the polyhedron defined in R2 by this system and classify
them as in (i) belonging to which active constraint(s), and (ii) being a (basic) non-feasible/feasible
solution. Use Definitions 2.12 and 2.14 to check if your classification is correct.

a) (1.5, 0)

b) (1, 0)

c) (2, 1)

d) (1.5, 3)
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Chapter 3

Basis, Extreme Points and
Optimality in Linear Programming

3.1 Polyhedral sets in standard form

In the context of linear programming problems, we will often consider problems written in the
so-called standard form. The standard form can be understood as posing the linear programming
problem as an underdetermined system of equations (that is, with fewer equations than variables).
Then, we will work on selecting a subset of the variables to be set to zero so that the number of
remaining variables is the same as that of equations, making the system solvable.

A key point in this chapter will be devising how we relate this process of selecting variables with
that of selecting a subset of active constraints (forming a vertex, as we have seen in the previous
chapter) that will eventually lead to an optimal solution.

3.1.1 The standard form of linear programming problems

First, let us formally define the notion of a standard-form polyhedral set. Let A is a m×n matrix
and b ∈ Rm. The standard form polyhedral set P is given by

P = {x ∈ Rn : Ax = b, x ≥ 0} .
We assume that the m equality constraints are linearly independent, i.e., A is full (row) rank
(m ≤ n). We know that a basic solution can be obtained from a collection of n active constraints
since the problem is defined in Rn.

One important point is that any linear programming problem can be represented in the standard
form. This is achieved utilising nonnegative slack variables. Thus, a feasibility set that is, say,
originally represented as

P = {x ∈ Rn : A1x ≤ b1, A2x ≥ b2, x ≥ 0}
can be equivalently represented as a standard-form polyhedral set. For that, it must be modified
to consider slack variables s1 ≥ 0 and s2 ≥ 0 such that

P =
{
(x, s1, s2) ∈ R(n+|b1|+|b2|) : A1x+ s1 = b1, A2x− s2 = b2, (x, s1, s2) ≥ 0

}
,

where |u| represents the cardinality of the vector u. Another transformation that may be required
consists of imposing the condition x ≥ 0. Let us assume that a polyhedral set P was such that
(notice the absent nonnegativity condition)

P = {x ∈ Rn : Ax = b} .

45
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It is a requirement for standard-form linear programs to have all variables to be assumed nonneg-
ative. To achieve that in this case, we can simply include two auxiliary variables, say x+ and x−,
with the same dimension as x, and reformulate P as

P =
{
x+, x− ∈ Rn : A(x+ − x−) = b, x+, x− ≥ 0

}
.

These transformations, as we will see, will be required for employing the simplex method to solve
linear programming problems with inequality constraints and, inevitably, will always render stan-
dard form linear programming problems with more variables than constraints, or m < n.

The standard-form polyhedral set P always has, by definition, m active constraints because of its
equality constraints. To reach the total of n active constraints, n−m of the remaining constraints
xi ≥ 0, i = 1, . . . , n, must be made active, which can be done by selecting n −m of those to be
set as xi = 0. These n active constraints (the original m plus the n − m variables set to zero)
form a basic solution, as we have seen in the last chapter. If it happens that the m equalities can
hold while the constraints xi ≥ 0, i = 1, . . . , n, are satisfied, then we have a basic feasible solution
(BFS). Theorem 3.1 summarises this process, guaranteeing that the setting of n−m variables to
zero will render a basic solution.

Theorem 3.1 (Linear independence and basic solutions). Consider the constraints Ax = b and
x ≥ 0, and assume that A has m linearly independent (LI) rows I = {1, . . . ,m}. A vector x ∈ Rn

is a basic solution if and only if we have that Ax = b and there exists indices B(1), . . . , B(m) such
that

(1) The columns AB(1), . . . , AB(m) of A are LI

(2) If j ̸= B(1), . . . , B(m), then xj = 0.

Proof. Assume that (1) and (2) are satisfied. Then the active constraints xj = 0 for j /∈
{B(1), . . . , B(m)} and Ax = b imply that

m∑

i=1

AB(i)xB(i) =

n∑

j=1

Ajxj = Ax = b.

Since the columns
{
AB(i)

}
i∈I

are LI,
{
xB(i)

}
i∈I

are uniquely determined and thus Ax = b has a

unique solution, implying that x is a basic solution (cf. Theorem 2.15).

Conversely, assume that x is a basic solution. Let xB(1), . . . , xB(k) be the nonzero components of
x. Thus, the system

n∑

i=1

Aixi = b and {xi = 0}i/∈{B(1),...,B(k)}

has a unique solution, and so does
∑k

i=1AB(i)xB(i) = b, implying that the columns AB(1), . . . , AB(k)

are LI. Otherwise, there would be scalars λ1, . . . , λk, not all zeros, for which
∑k

i=1AB(i)λi =

0; this would imply that
∑k

i=1AB(i)(xB(i) + λi) = b, contradicting the uniqueness of x. Since
AB(1), . . . , AB(k) are LI, k ≤ m. Also, since A has m LI rows, it must have m LI columns spanning
Rm. Using Theorem 2.4, we can obtain m − k additional columns AB(k+1), . . . , AB(m) so that
AB(1), . . . , AB(m) are LI.

Finally, since k ≤ m, {xj = 0}i/∈{B(1),...,B(m)} ⊂ {xj = 0}i/∈{B(1),...,B(k)}, satisfying (1) and (2).
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This proof highlights an important aspect in the process of generating basic solutions. Notice
that once we set n−m variables to be zero, the system of equations forming P becomes uniquely
determined, i.e.,

m∑

i=1

AB(i)xB(i) =

n∑

j=1

Ajxj = Ax = b.

3.1.2 Forming bases for standard-form linear programming problems

Theorem 3.1 provides us with a way to develop a simple procedure to generate all basic solutions
of a linear programming problem in standard form.

1. Choose m LI columns AB(1), . . . , AB(m);

2. Let xj = 0 for all j /∈ {B(1), . . . , B(m)};

3. Solve the system Ax = b to obtain xB(1), . . . , xB(m).

You might have noticed that in the proof of Theorem 3.1, the focus shifted to the columns of
A rather than its rows. The reason for that is because, when we think of solving the system
Ax = b, what we are truly doing is finding a vector x representing the linear combination of the
columns of A that yield the vector b. This creates an association between the columns of A and the
components of x (i.e., the variables). Notice, however, that the columns of A are not the variables
per se, as they have dimension m (while x ∈ Rn).

One important interpretation for Theorem 3.1 is that we will form bases for the column space of A
by choosing m components to be nonzero in a vector of dimension n. Since m < n by definition, A
can only have rank rank(A) = min{m,n} = m, which happens to be the size of the row space of A
(as the rows are assumed LI). This, in turn, means that both the column and the row spaces have
dimension m. Thus, these bases are bases for the column space of A. Finally, finding the vector
x is the same as finding how the vector b can be expressed as a linear combination of that basis.
Notice that this is always possible when the basis spans Rm (as we have m LI column vectors) and
b ∈ Rm.

You will notice that from here onwards, we will implicitly refer to the columns of A as variables
(although we actually mean the weight associated with that column, represented by the respective
component in the variable x). Then, when we say that we are setting some (n−m) of the variables
to be zero, it means that we are ignoring the respective columns of A (the mapping between
variables and columns being their indices: x1 referring to the first column, x2 to the second, and
so forth), while using the remainder to form a (unique) combination that yields the vector b, being
the weights of this combination precisely the solution x, which in turn represent the coordinates in
Rn of the vertex formed by the n (m equality constraints plus n−m variables set to zero) active
constraints.

As we will see, this procedure will be at the core of the simplex method. Since we will often refer
to elements associated with this procedure, it will be useful to define some nomenclature.

We say that B =
{
AB(i)

}
i∈IB

is a basis (or, perhaps more precisely, a basic matrix) with basic

indices IB = {B(1), . . . , B(m)}. Consequently, we say that the variables xj , for xj , for j ∈ IB , are
basic variables. Somewhat analogously, we say that the variables chosen to be set to zero are the
nonbasic variables xj , for j ∈ IN , where IN = J \ IB , with J = {1, . . . , n} being the indices of all
variables (and all columns of A).
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Notice that the basic matrix B is invertible, since its columns are LI (c.f. Theorem 2.4). For
xB = (xB(1), . . . , xB(m)), the unique solution for BxB = b is

xB = B−1b, where B =


AB(1) . . . AB(m)


 and xB =



xB(1)

...
xB(m)


 .

Let us consider the following numerical example. Let us consider the following set P

P =





x ∈ R3 :

x1 + x2 + 2x3 ≤ 8

x2 + 6x3 ≤ 12

x1 ≤ 4

x2 ≤ 6

x1, x2, x3 ≥ 0





, (3.1)

which can be written in the standard by adding slack variables {xi}i∈{4,...,7}, yielding

P =





x ∈ R7 :

x1 + x2 + 2x3 + x4 = 8

x2 + 6x3 + x5 = 12

x1 + x6 = 4

x2 + x7 = 6

x1, . . . , x7 ≥ 0





. (3.2)

The system Ax = b can be represented as



1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1


x =




8
12
4
6


 .

Following our notation, we have that m = 4 and n = 7. The rows of A are LI, meaning that
rank(A) = 41. We can make arbitrary selections of n −m = 3 variables to be set to zero (i.e.,
nonbasic) and calculate the value of the remaining (basic) variables. For example:

• Let IB = {4, 5, 6, 7}; in that case xB = (8, 12, 4, 6) and x = (0, 0, 0, 8, 12, 4, 6), which is a
basic feasible solution (BFS), as x ≥ 0.

• For IB = {3, 5, 6, 7}, xB = (4,−12, 4, 6) and x = (0, 0, 4, 0,−12, 4, 6), which is basic but not
feasible, since x5 < 0.

3.1.3 Adjacent basic solutions

Now that we know how a solution can be recovered, the next important concept that we need to
define is how we, from one basic solution, move to an adjacent solution. This will be the mechanism
that the simplex method will utilise to move from one solution to the next in the search for the
optimal solution.

Let us start formally defining the notion of an adjacent basic solution.

1You can see for yourself using Gaussian elimination or row reduction. Tip: do the elimination on the transpose
A⊤ instead, recalling that rank(A) = rank(A⊤).
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Definition 3.2 (Adjacent basic solutions). Two basic solutions are adjacent if they share n−1 LI
active constraints. Alternatively, two bases B1 and B2 are adjacent if all but one of their columns
are the same.

For example, consider the set polyhedral set P defined in (3.2). Our first BFS was defined by
making x1 = x2 = x3 = 0 (nonbasic index set IN = {1, 2, 3}). Thus, our basis was IB = {4, 5, 6, 7}.
An adjacent basis was then formed, by replacing the basic variable x4 with the nonbasic variable
x3, rendering the new (not feasible) basis IB = {3, 5, 6, 7}.
Notice that the process of moving between adjacent basis has a simple geometrical interpretation.
Since adjacent bases share all but one basic element, this means that the two must be connected by a
line segment (in the case of the example, it would be the segment between (0, 8) and (4, 0), projected
onto (x3, x4) ∈ R2, or equivalently, the line between (0, 0, 0, 8, 12, 4, 6) and (0, 0, 4, 0,−12, 4, 6)
(Notice how the coordinate x6 also changed values; this is necessary, so the movement is made
along the edge of the polyhedral set. This will become clearer when we analyse the simplex method
in further detail in Chapter 4.

3.1.4 Redundancy and degeneracy

An important underlying assumption in Theorem 3.1 is that the matrix A in the definition of the
polyhedral set P is full (row) rank, that is, there are m linearly independent rows and thus m
independent columns. Theorem 3.3 shows that this assumption can actually be made without loss
of generality.

Theorem 3.3 (Redundant constraints). Let P = {x ∈ Rn : Ax = b, x ≥ 0}, where A is m × n
matrix with rows {ai}i∈I and I = {1, . . . ,m}. Suppose that rank(A) = k < m and that the rows

ai1 , . . . , aik are LI. Then P is the same set as Q =
{
x ∈ Rn : a⊤i1x = bi1 , . . . , a

⊤
ik
x = bik , x ≥ 0

}
.

Proof. Assume, without loss of generality, that i1 = 1 and ik = k. Clearly, P ⊂ Q, since a solution
satisfying the constraints forming P also satisfies those forming Q.

As rank(A) = k, the rows ai1 , . . . , aik form a basis in the row space of A and any row ai, i ∈ I,
can be expressed as a⊤i =

∑k
j=1 λija

⊤
j for λij ∈ R.

For y ∈ Q and i ∈ I, we have a⊤i y =
∑k

j=1 λija
⊤
j y =

∑k
j=1 λijbj = bi, which implies that y ∈ P

and that Q ⊂ P . Consequently, P = Q.

Theorem 3.3 implies that any linear programming problem in standard form can be reduced to
an equivalent problem with linearly independent constraints. It turns out that, in practice, most
professional-grade solvers (i.e., software that implements solution methods and can be used to find
optimal solutions to mathematical programming models) have preprocessing routines to remove
redundant constraints. This means that the problem is automatically treated to become smaller
by not incorporating unnecessary constraints.

Degeneracy is somewhat related to the notion of redundant constraints. We say that a given vertex
is a degenerate basic solution if it is formed by the intersection of more than n active constraints
(in Rn). Effectively, this means that more than n −m variables (i.e, some of the basic variables)
are set to zero, which is the main way to identify a degenerate BFS. Figure 3.1 illustrates a case
in which degeneracy is present.

Notice that, while in the figure on the left, the constraint causing degeneracy is redundant, that
is not the case on the figure on the righthand side. That is, redundant constraints may cause
degeneracy, but not all constraints causing degeneracy are redundant.
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A
B

C

D

Figure 3.1: A is a degenerate basic solution, B and C are degenerate BFS, and D is a BFS.

In practice, degeneracy might cause issues related to the way we identify vertices. Because more
than n active constraints form the vertex, and yet, we identify vertices by groups of n constraints
to be active, it means that we might be have a collection of adjacent bases that, in fact, are
representing the same vertex in space, meaning that we might be “stuck” for a while in the same
position while scanning through adjacent bases. The numerical example below illustrates this
phenomenon.

Let us consider again the example in (3.2).



1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1


x =




8
12
4
6




Observe the following,

• let IB = {1, 2, 3, 7}; this implies that x = (4, 0, 2, 0, 0, 0, 6). There are 4 zeros (instead of
n−m = 3) in x, which indicates degeneracy.

• Now, let = IB = {1, 3, 4, 7}. This also implies that x = (4, 0, 2, 0, 0, 0, 6). The two bases are
adjacent yet represent the same point in R7.

As we will see, there are mechanisms that prevent the simplex method from becoming stuck on
such vertices forever, an issue that is referred to as cycling. One final point to observe about
degeneracy is that it can be caused by the chosen representation of the problem. For example,
consider the two equivalent sets:

P1 = {(x1, x2, x3) : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x3 ≥ 0} and P2 = P1 ∩ {x2 ≥ 0} .
The polyhedral set P2 is equivalent to P1 since x2 ≥ 0 is a redundant constraint. In that case, one
can see that, while the point (0, 0, 1) is not degenerate in P1, it is in P2, which illustrates the weak
but existent relationship between redundancy and degeneracy. This is illustrated in Figure 3.2.

3.2 Optimality of extreme points

Now that we have discussed how to algebraically represent extreme points and have seen a simple
mechanism to iterate among their adjacent neighbours, the final element missing for us to be able
to devise an optimisation method is to define the optimality conditions we wish to satisfy. In other
words, we must define the conditions that, once satisfied, mean that we can stop the algorithm
and declare the current solution optimal.
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(0, 0, 1)

(1, 1, 0)

Figure 3.2: (0, 0, 1) is degenerate if you add the constraint x2 ≥ 0.

3.2.1 The existence of extreme points

First, let us define the condition that guarantees the existence of extreme points in a polyhedral
set. Otherwise, there is no hope of finding an optimal solution.

Definition 3.4 (Existence of extreme points). A polyhedral set P ⊂ Rn contains a line if P ̸= ∅
and there exists a nonzero vector d ∈ Rn such that x+ λd ∈ P for all λ ∈ R.

Figure 3.3 illustrates the notion of containing a line and the existence of extreme points. Notice
that if a set would have any “corner”, then that would imply that the edges that form that corner
prevent a direction (or a line) to be fully contained within the set. Furthermore, the said corner
would be an extreme point.

P
Q

Figure 3.3: P contains a line (left) and Q does not contain a line (right)

We are now ready to pose the result that utilises Definition 3.4 to provide the conditions for the
existence of extreme points.

Theorem 3.5 (Existence of extreme points). Let P =
{
x ∈ Rn : a⊤i x ≥ bi, i = 1, . . . ,m

}
̸= ∅ be a

polyhedral set. Then the following are equivalent:

(1) P has at least one extreme point;

(2) P does not contain a line;

(3) There exists n LI vectors within {ai}mi=1.

Proof. We start with (2)⇒ (1), i.e., if P does not contain a line, then it must have a basic feasible
solution and thus, cf. Theorem 2.15, an extreme point. Let x ∈ Rn be an element of P and let
I =

{
i : a⊤i x = bis

}
. If n of the vectors ai, i ∈ I, are linearly independent, then x is a basic feasible

solution, cf. Definition 2.14.

If less than n vectors are linearly independent, then all vectors ai, i ∈ I, lie in a proper subspace
of Rn and, consequently, there exists a nonzero vector d ∈ Rn such that a⊤i d = 0 for every i ∈ I.
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Consider the line consisting of all points of the form y = x + λd, with λ ∈ reals. For i ∈ I, we
have that

a⊤i y = a⊤i x+ λa⊤i d = a⊤i x = b.

Thus, the active constraints remain active at all points on the line. Now, by assumption, the
polyhedral set contains no lines, and thus there will be values for λ for which some constraint will
eventually be violated. Let λ be the point at which this new constraint j ̸∈ I becomes active, i.e.,
a⊤j x+ λ = bj .

We must show that aj is not a linear combination of {ai}i∈I . We know that a⊤j x ̸= bj , as j ̸∈ I
and that a⊤j x + λ = bj by the definition of λ. This implies that a⊤j d ̸= 0. Contrasting this with

the fact that a⊤i d = 0, ∀i ∈ I, we conclude that aj is linearly independent of {ai}i∈I
2.

To conclude, we can see that by moving from x to x + λd, the number of linearly independent
active constraints is increased by one. Repeating the see procedure as many times as needed, we
will eventually reach a point having n linearly independent constraints, being thus a basic feasible
solution, as we retain feasibility in the process.

To show that (1)→ (3), we simply need to notice that if P has an extreme point x, then it is also
a basic feasible solution (cf. Theorem 2.15) and there are n active constraints corresponding to
{ai}i∈I linearly independent vectors.

Finally, let us show that (3) ⇒ (2) by contradiction. Assume, without loss of generality, that
a1, . . . , an are the n linearly independent vectors. Suppose that P contains a line x + λd where
d ̸= 0. Therefore, we have that a⊤i x ≥ bi, for all i = 1, . . . ,m and for any λ. The only way this is
possible is if a⊤i d = 0 for all i = 1, . . . ,m, which implies that d = 0, reaching a contradiction that
establishes that P does not contain a line.

It turns out that linear programming problems in the standard form do not contain a line, meaning
that they will always provide at least one extreme point (and, consequently, a basic feasible solution,
cf. Theorem 2.15). More generally, bounded polyhedral sets do not contain a line, and neither
does the positive orthant.

We are now to state the result that proves the intuition we had when analysing the plots in Chapter
1, which states that if a polyhedral set has at least one extreme point and at least one optimal
solution, then there must be an optimal solution that is an extreme point.

Theorem 3.6 (Optimality of extreme points). Let P = {x ∈ Rn : Ax ≥ b} be a polyhedral set and
c ∈ Rn. Consider the problem

z = min.
{
c⊤x : x ∈ P

}
.

Suppose that P has at least one extreme point and that there exists an optimal solution. Then,
there exists an optimal solution that is an extreme point of P .

Proof. Let Q =
{
x ∈ Rn : Ax ≥ b, c⊤x = z

}
be the (nonempty) polyhedral set of all optimal solu-

tions. Since Q ⊂ P and P contains no line (cf. Theorem 3.5), Q contains no line either, and thus
has an extreme point.

Let x be an extreme point of Q. By contradiction, assume that x is not an extreme point of
P . Then, there exist y ̸= x, w ̸= x, and λ ∈ [0, 1] such that x = λy + (1 − λ)w. Then,
c⊤x = λ(c⊤y) + (1− λ)c⊤w. As c⊤x = z is optimal, we have that z ≤ c⊤y and z ≤ c⊤w, and thus
z = c⊤y = c⊤w.

2To see that, notice that d is orthogonal to any linear combination of vectors {ai}i∈I whilst it is not orthogonal
to aj and, thus, aj cannot be expressed as a linear combination of {ai}i∈I .
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Thus, w ∈ Q and y ∈ Q, contradicting that x is an extreme point. Thus, x must be an extreme
point and, since we established that x ∈ Q, it is also optimal.

Theorem 3.6 is posed in a somewhat general way, which might be a source for confusion. First,
recall that in the example in Chapter 1, we considered the possibility of the objective function level
curve associated with the optimal value to be parallel to one of the edges of the feasible region,
meaning that instead of a single optimal solution (a vertex), we would observe a line segment
containing an infinite number of optimal solutions, of which exactly two would be extreme points.

This is important because we intend to design an algorithm that only inspects extreme points.
This discussion guarantees that, even for the cases in which a whole set of optimal solutions exists,
some elements in that set will be extreme points anyway and thus identifiable by our method.

In a more general case (with n > 2) it might be so that a whole facet of optimal solutions is obtained.
That is precisely the polyhedral set of all optimal solutions Q in the proof. This polyhedral set
will not contain a line and, therefore (cf. Theorem 3.5), have at least one extreme point.

Perhaps another important point is to notice that the result is posed assuming a minimisation
problem, but it naturally holds for maximisation problems as well. Maximising a function f(x) is
the same as minimising −f(x), with the caveat that, although the optimal value x∗ is the same in
both cases, the optimal values are symmetric in sign (because of the additional minus we included
in the problem being originally maximised).

3.2.2 Finding optimal solutions

We now focus on the issue of being able to find and recognise extreme points as optimal solutions.
In general, optimisation methods iterate the following steps:

1. Start from an initial (often feasible) solution;

2. Find a nearby solution with better value;

3. If none are available, return the best-known solution.

This very simple procedure happens to be the core idea of most optimisation methods. We will
concentrate on how to identify directions of improvement and, as a consequence of their absence,
how to identify optimality.

Starting from a point x ∈ P , we would like to move in a direction d that yields improvement while
maintaining feasibility. Definition 3.7 provides a formalisation of this idea.

Definition 3.7 (Feasible directions). Let x ∈ P , where P ⊂ Rn is a polyhedral set. A vector
d ∈ Rn is a feasible direction at x if there exists θ > 0 for which x+ θd ∈ P .

Figure 3.4 illustrates the concept. Notice that at extreme points, the relevant feasible directions
are those along the edges of the polyhedral set since those are the directions that can lead to other
extreme points.

Let us now devise a way of identifying feasible directions algebraically. For that, let A be a m× n
matrix, I = {1, . . . ,m} and J = {1, . . . , n}. Consider the problem

min.
{
c⊤x : Ax = b, x ≥ 0

}
.
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P

Figure 3.4: Feasible directions at different points of P

Let x be a basic feasible solution (BFS) with basis B = [AB(1), . . . , AB(m)]. Recall that the basic
variables xB are given by

xB = (xB(i))i∈IB = B−1b, with IB = {B(1), . . . , B(m)} ⊂ J,

and that the remaining nonbasic variables xN are such that xN = (xj)j∈IN = 0, with IN = J \ IB .
Moving to a neighbouring solution can be achieved by simply moving between adjacent bases,
which can be accomplished without a significant computational burden. This entails selecting a
nonbasic variable xj , j ∈ IN , and increasing it to a positive value θ.

Equivalently, we can define a feasible direction d = [dN , dB ], where dN represent the components
associated with nonbasic variables and dB those associated with basic variables and move from the
point x to the point x + θd. The components dN associated with the nonbasic variables are thus
defined as

d =

{
dj = 1

dj′ = 0, for all j′ ̸= j,

with j, j′ ∈ IN . Notice that, geometrically, we are moving along a line in the dimension represented
by the nonbasic variable xj .

Now, feasibility might become an issue if we are not careful to retain feasibility conditions. To
retain feasibility, we must observe that A(x + θd) = b, implying that Ad = 0. This allows us to
define the components dB of the direction vector d that is associated with the basic variables xj ,
j ∈ IB , since

0 = Ad =

n∑

j=1

Ajdj =

m∑

i=1

AB(i)dB(i) +Aj = BdB +Aj

and thus dB = −B−1Aj is the basic direction implied by the choice of the nonbasic variable xj ,
j ∈ IN , to become basic. The vector dB can be thought of as the adjustments that must be made
in the value of the other basic variables to accommodate the new variable becoming basic to retain
feasibility.

Figure 3.5 provides a schematic representation of this process, showing how the change between
adjacent basis can be seen as a movement between adjacent extreme points. Notice that it conveys
a schematic representation of a n = 5 dimensional problem, in which we ignore all them dimensions
and concentrate on the n−m dimensional projection of the feasibility set. This implies that the only
constraints left are those associated with the nonnegativity of the variables x ≥ 0, each associated
with an edge of this alternative representation. Thus, when we set n − m (nonbasic variables)
to zero, we identify an associated extreme point. As n − m = 2, we can plot this alternative
representation on R2.

Clearly, overall feasibility, i.e., ensuring that x ≥ 0 can only be retained if θ > 0 is chosen
appropriately small. This can be achieved if the following is observed:
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A
B

C

x
1
=

0

x2 = 0

x3 = 0

x4 = 0 x5 = 0

Figure 3.5: Example: n = 5 and n−m = 2. At A, x1 = x3 = 0 and x2, x4, x5 ≥ 0. Increasing x1
while keeping x3 zero leads to B. At B, suppose IN = {3, 5}; by increasing x3 while keeping x5
zero would leads to C.

1. All the other nonbasic variables remain valued at zero, that is, xj′ = 0 for j′ ∈ IN \ {j}.

2. If x is a nondegenerate extreme point, then all xB > 0 and thus xB+θdB ≥ 0 for appropriately
small θ > 0.

3. If x is a degenerate extreme point: dB(i) might not be feasible since, for some B(i), if dB(i) < 0
and xB(i) = 0, any θ > 0 will make xB(i) < 0.

We will see later that we can devise a simply rule to define a value for θ that guarantees the above
will be always observed. For now, we will put this discussion on hold and focus on the issue of how
to guide the choice of which nonbasic variable xj , j ∈ IN , to select to become basic.

3.2.3 Moving towards improved solutions

A simple yet efficient way of deciding which nonbasic component j ∈ IN to make basic is to consider
the immediate potential benefit that it would have for the objective function value.

Using objective function c⊤x, if we move along the feasible direction d as previously defined, we
have that the objective function value changes by

c⊤d = c⊤BdB + cj = cj − c⊤BB−1Aj ,

where cB = [cB(1), . . . , cB(m)]. The quantity cj − cBB−1Aj can be used, for example, in a greedy
fashion, meaning that we choose the nonbasic variable index j ∈ IN with greatest potential of
improvement.

First, let us formally define this quantity, which is known as the reduced cost.

Definition 3.8 (Reduced cost). Let x be a basic solution associated with the basis B and let
cB = [cB(1), . . . , cB(m)] be the objective function coefficients associated with the basis B. For each
nonbasic variable xj, with j ∈ IN , we define the reduced cost cj as

cj = cj − c⊤BB−1Aj .
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The name reduced cost is motivated by the fact that it quantifies a cost change onto the reduced
space of the basic variables. In fact, the reduced cost is calculating the change in the objective
function caused by the increase in one unit of the nonbasic variable xj elected to become basic
(represented by the cj component) and the associated change caused by the accommodation in
the basic variable values to retain feasibility (−c⊤BB−1Aj). Therefore, the reduced cost can be
understood as a marginal value of change in the objective function value associated with each
nonbasic variable.

Let us demonstrate this with a numerical example. Consider the following linear programming
problem

min. 2x1 + 1x2 + 3x3 + 2x4

s.t.: x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

x1, x2, x3, x4 ≥ 0.

Let IB = {1, 2}, yielding
B =

[
1 1
2 0

]
.

Thus, x3 = x4 = 0 and x = (1, 1, 0, 0). The basic direction d3B for x3 is given by

d3B = −B−1A3 = −
[
0 1/2
1 −1/2

] [
1
3

]
=

[
−3/2
1/2

]
.

which gives d3 = (−3/2, 1/2, 1, 0). Analogously, for x4, we have

d4B = −B−1A4 = −
[
0 1/2
1 −1/2

] [
1
4

]
=

[
−2
1

]
.

The (reduced) cost of moving along the direction given by d3 is

c⊤d3 = (c1, c2)
⊤d3B + c3 = ((−3/2)2 + (1/2)1) + 3 = 0.5

while moving along d4 has a cost of

c⊤d4 = (c1, c2)
⊤d4B + c4 = ((−2)2 + (1)1) + 2 = −1.

Thus, between d3 and d4, d4 is a better direction since its reduced cost indicates a reduction of
1 unit of the objective function per unit of x4. In contrast, the reduced cost associated with d3

indicates an increase of 0.5 units of the objective function per unit of x3, indicating that this is
a direction to be avoided as we are minimising the problem. Clearly, the willingness to choose
xj′ , j

′ ∈ IN as the variable to become basic will depend on whether the scalar cj′ − (cj)
⊤
j∈IB

dB is
negative (recall that we want to minimise the problem, so the smaller the total cost, the better).
Another point is how large in module the reduced cost is. Recall that the reduced cost is, in fact, a
measure of the marginal value associated with the increase in value of the nonbasic variable. Thus
the more negative it is, the quicker the objective function value will decrease per unit of increase of
the nonbasic variable value. One interesting thing to notice is what is the reduced cost associated
with basic variables. Recall that B = [AB(1), . . . , AB(m)] and thus B−1[AB(1), . . . , AB(m)] = I.

Therefore B−1AB(i) is the i
th column of I, denoted ei, implying that

cB(i) = cB(i) − c⊤BB−1AB(i) = cB(i) − c⊤Bei = cB(i) − cB(i) = 0.
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3.2.4 Optimality conditions

Now that we have seen how to identify promising directions for improvement, we have incidentally
developed a framework for identifying the optimality of a given basic feasible solution (BFS). That
is, a BFS from which no direction of improvement can be found must be locally optimal. And,
since local optimality implies global optimality in the presence of convexity (cf. Theorems 2.8 and
2.9), we can declare this BFS as an optimal solution.

Theorem 3.9 establishes the optimality of a BFS from which no improving feasible direction can
be found without explicitly relying on the notion of convexity.

Theorem 3.9 (Optimality conditions). Consider the problem P : min.
{
c⊤x : Ax = b, x ≥ 0

}
.

Let x be the BFS associated with a basis B and let c be the corresponding vector of reduced costs.

(1) if c ≥ 0, then x is optimal.

(2) if x is optimal and nondegenerate, then c ≥ 0.

Proof. To prove (1), assume that cj ≥ 0, let y be a feasible solution to P , and d = y− x. We have
that Ax = Ay = b and thus Ad = 0. Equivalently:

BdB +
∑

j∈IN

Ajdj = 0⇒ dB = −
∑

j∈IN

B−1Ajdj ,

implying that

c⊤d = c⊤BdB +
∑

j∈IN

cjdj =
∑

j∈IN

(cj − c⊤BB−1Aj)dj =
∑

j∈IN

cjdj . (3.3)

We have that xj = 0 and yj ≥ 0 for j ∈ IN . Thus, dj ≥ 0 and cjdj ≥ 0 for j ∈ IN , which implies
that c⊤d ≥ 0 (cf. (3.3)). Consequently,

c⊤d ≥ 0⇒ c⊤(y − x) ≥ 0⇒ c⊤y ≥ c⊤x,

i.e., x is optimal. To prove (2) by contradiction, assume that x is optimal with cj < 0 for some
j ∈ IN . Thus, we could improve on xmoving along this jth direction d, contradicting the optimality
of x.

A couple of remarks are worth making at this point. First, notice that, in the presence of degener-
acy, it might be that x is optimal with cj < 0 for some j ∈ IN . This is mostly caused by problems
with multiple optima (i.e., the set of optimal solutions not being empty nor a singleton). Luckily,
the simplex method manages to get around this issue in an effective manner, as we will see in the
next chapter. Another point to notice is that, if cj > 0, ∀j ∈ IN , then x is a unique optimal.
Analogously, if c ≥ 0 with cj = 0 for some j ∈ IN , then it means that moving in that direction will
cause no change in the objective function value, implying that both BFS are “equally optimal”
and that the problem has multiple optimal solutions.
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3.3 Exercises

Exercise 3.1: Properties of basic solutions

Prove the following theorem:

Theorem (Linear independence and basic solutions). Consider the constraints Ax = b and x ≥ 0,
and assume that A has m LI rows M = {1, . . . ,m}. A vector x ∈ Rn is a basic solution if and only if we
have that Ax = b and there exists indices B(1), . . . , B(m) such that

(1) The columns AB(1), . . . , AB(m) are LI

(2) If j ̸= B(1), . . . , B(m), then xj = 0.

Note: the theorem is proved in the notes. Use this as an opportunity to revisit the proof carefully,
and try to take as many steps without consulting the text as you can. This is a great exercise to
help you internalise the proof and its importance in the context of the material. I strongly advise
against blindly memorising it, as I suspect you will never (in my courses, at least) be requested to
recite the proof literally.

Exercise 3.2: Basic solutions and extreme points

Consider the set P = {x ∈ R2 : x1 + x2 ≤ 6, x2 ≤ 3, x1, x2 ≥ 0}.

(a) Enumerate all basic solutions, and identify those that are basic feasible solutions.

(b) Draw the feasible region, and identify the extreme point associated with each basic feasible
solution.

(c) Consider a minimization problem with the cost vector c′ = (c1, c2, c3, c4) = (−2, 12 , 0, 0).
Compute the basic directions and the corresponding reduced costs of the nonbasic variables
at the basic solution x′ = (3, 3, 0, 0) with x′

B = (x1, x2) and x′
N = (x3, x4); either verify that

x′ is optimal, or move along a basic direction which leads to a better solution.

Exercise 3.3: Degeneracy - part 1

Given the linear program given below,

max 2x1 + x2
s.t.

2x1 + 2x2 ≤ 9
2x1 − x2 ≤ 3
x1 − x2 ≤ 1

4x1 − 3x2 ≤ 5
x1 ≤ 2.5
x2 ≤ 4

x1, x2 ≥ 0

(a) Plot the constraints and find the degenerate basic feasible solutions.

(b) What are the bases forming the degenerate solutions?
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Exercise 3.4: Feasible direction

Let x be a point in a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}. Show that a vector d ∈ Rn is a
feasible direction at x ∈ P if and only if Ad = 0 and di ≥ 0 for all i for which xi = 0. A feasible
direction of P at point x is a vector d ̸= 0 such that x+ θd ∈ P for some θ > 0.

Exercise 3.5: Optimality of extreme points

Prove the following theorem.

Theorem (Optimality of extreme points). Let P = {x ∈ Rn : Ax ≥ b} be a polyhedral set and c ∈ Rn.
Consider the problem

z = min.
{
c⊤x : x ∈ P

}
.

Suppose that P has at least one extreme point and that there exists an optimal solution. Then, there exists
an optimal solution that is an extreme point of P .

Note: see Exercise 3.1.
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Chapter 4

The simplex method

4.1 Developing the simplex method

In Chapter 3, we discussed all the necessary technical aspects required to develop the simplex
method. In this chapter, we will concentrate on operationalising the method from a computational
standpoint.

4.1.1 Calculating step sizes

One discussion that we purposely delayed was that of how to define the value of the step size θ to
be taken in the feasible direction d. Let c ∈ Rn, A be a m × n full-rank matrix, b a nonnegative
m-sized vector1 and J = {1, . . . , n}. Consider the linear programming problem P in the standard
form

(P ) : min.
{
c⊤x : Ax = b, x ≥ 0

}
.

Building upon the elements we defined in Chapter 3, employing the simplex method to solve P
consists of the following set of steps:

1. Start from a nondegenerate basic feasible solution (BFS)

2. Find a negative reduced cost component cj . If c ≥ 0, return the current solution.

3. Move along the feasible direction d = (dB , dN ), where dj = 1, dN\{j} = 0 and dB = −B−1Aj .

Moving along the feasible direction d towards x+ θd (with scalar θ > 0) makes xj > 0 (i.e., j ∈ IN
enter the basis) while reducing the objective value at a rate of cj . Thus, one should move as far
as possible (say, take a step of length θ) along the direction d, which incurs on an objective value
change of θ(c⊤d) = θcj .

Moving as far along the feasible direction d as possible while observing that feasibility is retained
is equivalent to setting θ as

θ = max
{
θ ≥ 0 : A(x+ θd) = b, x+ θd ≥ 0

}
.

Recall that, by construction, the feasible direction d, we have that Ad = 0 and thus A(x+ θd) =
Ax = b. Therefore, the only feasibility condition that can be violated when setting θ too large is
the nonnegativity of all variables, i.e., x+ θd ≥ 0.

1Notice that this can be assumed without loss of generality, by multiplying both sides by a constant, which does
not change the constraint.
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To prevent this from being the case, all basic variables i ∈ IB for which the component in the basic
direction vector dB is negative must be guaranteed to retain

xi + θdi ≥ 0⇒ θ ≤ −xi
di
.

Therefore, the maximum value θ is that that can be increased until the first component of xB
turns zero. Or, more precisely put,

θ = min
i∈IB : di<0

{
−xB(i)

dB(i)

}
.

Notice that we only need to consider those basic variables with components di, i ∈ IB , that are
negative. This is because, if di ≥ 0, then xi + θdi ≥ 0 holds for any value of θ > 0. This means
that the constraints associated with these basic variables (referring to the representation in Figure
3.5) do not limit the increase in value of the select nonbasic variable. Notice that this can lead
to a pathological case in which none of the constraints limits the increase in value of the nonbasic
variable, which indicates that the problem has an unbounded direction of decrease for the objective
function. In this case, we say that the problem is unbounded.

Another important point is the assumption of a nondegenerate BFS. The nondegeneracy of the
BFS implies that xB(i) > 0, ∀i ∈ IB , and, thus, θ > 0. In the presence of degeneracy, one can infer

that the definition of the step size θ must be done more carefully.

Let us consider the numerical example we used in Chapter 3 with a generic objective function.

min. c1x1 + c2x2 + c3x3 + c4x4

s.t.: x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

x1, x2, x3, x4 ≥ 0.

Let c = (2, 0, 0, 0) and IB = {1, 2}. The reduced cost of the nonbasic variable x3 is

c3 = c3 − (c1, c2)
⊤[−3/2, 1/2] = −3.

where dB = [−3/2, 1/2]. As x3 increases in value, only x1 decreases, since d1 < 0. Therefore, the
largest θ for which x1 ≥ 0 is −(x1/d1) = 2/3. Notice that this is precisely the value that makes
x1 = 0, i.e., nonbasic. The new basic variable is now x3 = 2/3, and the new (adjacent, as we will
see next) extreme point is

x = x+ θd = (1, 1, 0, 0) + (2/3)(−3/2, 1/2, 1, 0) = (0, 4/3, 2/3, 0).

4.1.2 Moving between adjacent bases

Once we have defined the optimal step size θ, we move to a new BFS x. That new solution is such
that, for the nonbasic variable j ∈ IN selected to be basic, we observe that xj = θ. Now, let us
define as l the index of the basic variable that first becomes zero, that is, the variable that defines
the value of θ. More precisely put, let

l = argmin
i∈IB :di<0

{
−xB(i)

dB(i)

}
and, thus, θ =

{
−xB(l)

dB(l)

}
. (4.1)
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By moving to the BFS x by making x = x + θd, we are in fact moving from the basis B to an
adjacent basis B, defined as

B =

{
B(i) = B(i), for i ∈ IB \ {l}
B(i) = j, for i = l.

Notice that the new basis B only has one pair of variables swapped between basic and nonbasic
when compared against B. Analogously, the basic matrix associated with B is given by


AB(1) . . . AB(l−1) Aj AB(l+1) . . . AB(m)


 ,

where the middle column representing that the column AB(l) has been replaced with Aj .

Theorem 4.1 provides the technical result that formalises our developments so far.

Theorem 4.1 (Adjacent bases). Let Aj be the column of the matrix A associated with the selected
nonbasic variable index j ∈ IN . And let l be defined as (4.1), with AB(i) being its respective column
in A. Then

(1) The columns AB(i) and Aj are linearly independent. Thus, B is a basic matrix;

(2) The vector x = x+ θd is a BFS associated with B.

Proof. We start by proving (1). By contradiction, assume that
{
AB(i)

}
i∈IB\{l} and Aj are not

linearly independent. Thus, there exist {λi}mi=1 (not all zeros) such that

m∑

i=1

λiAB(i) = 0⇒
m∑

i=1

λiB
−1AB(i) = 0,

making B−1AB(i) not linearly independent. However, B−1AB(i) = B−1AB(i) for i ∈ IB \ {l} and
thus are all unit vectors ei with the lth component zero.

Now, B−1Aj = −dB , with component dB(l) ̸= 0, is linearly independent from B−1AB(i) =

B−1AB(i). Thus,
{
AB(i)

}
i∈IB

=
{
AB(i)

}
i∈B\{l} ∪ {Aj} are linearly independent, forming the

contradiction.

Now we focus on proving (2). We have that x ≥ 0, Ax = b and xj = 0 for j ∈ IN = J \ IB . This,
combined with

{
B(i)

}
i∈IB

being linearly independent (cf. (1)), completes the proof.

We have finally compiled all the elements we need to state the simplex method pseudocode, which
is presented in Algorithm 1. One minor detail in the presentation of the algorithm is the use of the
auxiliary vector u. This allows for the precalculation of the components of dB = −B−1Aj (notice
the changed sign) to test for unboundedness, that is, the lack of a constraint (and associated basic
variable) that can limit the increase of the chosen nonbasic variable.

The last missing element is proving that Algorithm 1 eventually converges to an optimal solution,
should one exists. This is formally stated in Theorem 4.2.

Theorem 4.2 (Convergence of the simplex method). Assume that P has at least one feasible
solution and that all BFS are nondegenerate. Then, the simplex method terminates after a finite
number of iterations, in one of the following states:
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(1) The basis B and the associated BFS are optimal; or

(2) d is such that Ad = 0, d ≥ 0, and c⊤d < 0, with optimal value −∞.

Proof. If the condition in Line 2 of Algorithm 1 is not met, then B and associated BFS are optimal,
c.f. Theorem 3.9. Otherwise, if Line 4 condition is met, then d is such that Ad = 0 and d ≥ 0,
implying that x+ θd ∈ P for all θ > 0, and a value reduction θc of −∞.

Finally, notice that θ > 0 step sizes are taken along d satisfy c⊤d < 0. Thus, the value of successive
solutions is strictly decreasing and no BFS can be visited twice. As there is a finite number of
BFS, the algorithm must eventually terminate.

Algorithm 1 Simplex method

1: initialise. Initial basis B, associated BFS x, and reduced costs c.
2: while cj < 0 for some j ∈ IN do
3: Choose some j for which cj < 0. Calculate u = B−1Aj .
4: if u ≤ 0 then
5: return z = −∞.
6: else
7: θ = mini∈IB :ui>0

{
xB(i)

ui

}
and l = argmini∈IB :ui>0

{
xB(i)

ui

}

8: Set xj = θ and xB = x− θu. Form new basis IB = IB \ {l} ∪ {j}.
9: Calculate cj = cj − c⊤BB−1Aj for all j ∈ IN .

10: end if
11: end while
12: return optimal basis IB and optimal solution x.

4.1.3 A remark on degeneracy

We now return to the issue related to degeneracy. As we discussed earlier, degeneracy is an
important pitfall for the simplex method. To recognise that the method arrived at a degenerate
BFS, one must observe how the values of the basic variables are changing. If, for θ, more than one
basic variable becomes zero at x = x+ θd, then B is degenerate.

Basically, if the current BFS is degenerate, θ = 0 can happen when xB(l) = 0 and the component

dB(l) < 0. Notice that a step size of θ = 0 is the only option to prevent infeasibility in this case.
Nevertheless, a new basis can still be defined by replacing AB(l) with Aj in B. However, x =

x+ θd = x. Sometimes, even though the method is effectively staying at the same extreme point,
changing the basis on a degenerate solution might eventually expose a direction of improvement,
a phenomenon that is called stalling. In an extreme case, it might be so that the selection of the
next basic variable is such that the same extreme point is recovered over and over again, which
is called cycling. The latter can be prevented by a specific technique for carefully selecting the
variable that will enter the basis.

Figure 4.1 illustrates an example of stalling. In that, a generic problem with five variables is
illustrated, with any given basis being formed by three variables. For example, at y, IB = 3, 4, 5,
with x3 > 0, x4 > 0, and x5 > 0. Notice that there are multiple bases representing x. Suppose
we have IB = {1, 2, 3}. Notice that in this case, we have x2 = x3 = 0 even though x2 and x3
are basic variables. Now, suppose we perform one simplex iteration and move to the adjacent
basis IB = {1, 3, 4}). Even though the extreme point is the same (x), this new basis exposes
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the possibility of moving to the nondegenerate basis IB = {3, 4, 5}, i.e., y. Assuming that we
are minimising, any direction with a negative component in the y-axis direction will represent an
improvement in the objective function (notice the vector c, which is parallel to the y-axis and
points upwards). Thus, the method is only stalled by the degeneracy of x but does not cycle.

c
x

y

f

h

g

−g

x4 = 0

x3 = 0

x1 = 0

x2 = 0

x5 = 0

Figure 4.1: IN = {4, 5} for x; f (x5 > 0) and g (x4 > 0) are basic directions. Making IN = {2, 5}
lead to new basic directions h (x4 > 0) and −g (x2 > 0).

4.2 Implementing the simplex method

We now focus on some specific details related to alternative simplex method implementations. In
a general sense, implementations of the simplex method vary in terms of how the selection of the
nonbasic variables with cj < 0 that enter the basis is made. Different ways of selecting the basic
variable l = argmini∈B|di<0

{
−xB(i)/dB(i)

}
to leave the basis in case of ties might be of interest,

especially in the attempt of preventing cycling.

Another important aspect related to implementations of the simplex method is how matrices are
represented, its consequences on memory utilisation, and how the operations related to matrix
inversion are carried out.

4.2.1 Pivot or variable selection

The rules utilised for making choices regarding entering and leaving variables are generally referred
to as pivoting rules. However, the term most commonly used to refer to the selection of nonbasic
variables to enter the basis is (simplex) pricing rules. Recall that these are applied to choose
between those variables that have favourable (negative, for minimisation) reduced costs.

• Greedy selection (or Dantzig’s rule): choose xj , j ∈ IN , with largest |cj |. Prone to cycling.

• Index-based order (or Bland’s rule): choose xj , j ∈ IN , with smallest j. It prevents cycling
but is computationally inefficient.

• Reduced cost pricing : calculate θ for all (or some) j ∈ N and pick smallest θcj . Calculating
the actual observed change for all nonbasic variables is too computationally expensive. Partial
pricing refers to the idea of only considering a subset of the nonbasic variables to calculate
θcj .
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• Devex 2 and steepest-edge3: most commonly used by modern implementations of the simplex
method, available in professional-grade solvers.

4.2.2 The revised simplex method

The central element in the simplex method is the calculation of the matrix B−1Aj , from which
the reduced cost vector cj , j ∈ IN , the basic feasible direction vector dB and the step size θ can
be easily computed.

First, let us consider a more natural way of implementing the simplex method so then we can
point out how the method can be revised to be more computationally efficient. We will refer
to this version as the “naive simplex”. The main differences between the naive and its revised
version will be how B−1Aj is computed and the amount of information being carried over between
iterations.

A somewhat natural way to implement the simplex method would be to store the term p⊤ = c⊤BB
−1

in an auxiliary variable by solving the linear system p⊤B = c⊤B . These terms are important, as we
will see later, and they are often referred to as the simplex multipliers.

Once the simplex multipliers p are available, the reduced cost cj associated with the nonbasic
variable index j ∈ IN is simply

cj = cj − p⊤Aj .

Once the column Aj is selected, we can then solve a second linear system Bu = Aj to determine
u = B−1Aj .

The key observation that can yield computational savings is that we do not need to solve two
linear systems. As one can notice, there is a common term between the two, the inverse of the
basic matrix B−1. If this matrix can be made available at the beginning of each iteration, then
the terms c⊤BB

−1 and B−1Aj can be easily and more cheaply (computationally) obtained.

For that to be possible, we need an efficient method of updating the matrix B−1 after each iteration.
To see how that can be accomplished, recall that

B = [AB(1), . . . , AB(m)], and

B = [AB(1), . . . , AB(l−1), Aj , AB(l+1) . . . , AB(m)],

where the lth column AB(l) is precisely how the adjacent bases B and B differ, with Aj replacing

AB(l) in B.

We can devise an efficient manner to update B−1 into B
−1

utilising elementary row operations.
First, let us formally define the concept.

Definition 4.3 (Elementary row operations). Adding a constant multiple of one row to the same
or another row is called an elementary row operation.

Defining elementary row operations is equivalent to devising a matrix Q = I +D to premultiply
B, where

D =

{
Dij = β,

Di′j′ = 0 for all i′, j′ ̸= i, j.

2P. M. J. Harris (1973), Pivot Selection Methods in the Devex LP Code, Math. Prog., 57, 341–374.
3J. Forrest & D. Goldfarb (1992), Steepest-Edge Simplex Algorithms for LP, Math. Prog., 5, 1–28.
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Calculating QB = (I +D)B is the same as having the jth row of B multiplied by a scalar β and
then having the resulting jth row added to the ith row of B. Before we continue, let us utilise a
numerical example to clarify this procedure. Let

B =



1 2
3 4
5 6




and suppose we would like to multiply the third row by 2 and have it then added to the first row.
That means that D13 = 2 and that Q = I +D would be

Q =



1 2

1
1




Then premultiplying B by Q yields

QB =



11 14
3 4
5 6


 .

As a side note, we have that Q−1 exists since det(Q) = 1. Furthermore, sequential elementary
row operations {1, 2, . . . , k} can be represented as Q = Q1Q2, . . . Qk.

Going back to the purpose of updating B−1 into B
−1

, notice the following. Since B−1B = I, each
term B−1AB(i) is the i

th unit vector ei (the i
th column of the identity matrix). That is,

B−1B =


e1 . . . el−1 u el+1 . . . em


 =




1 u1
. . .

...
ul
...

. . .

um 1



,

where u = B−1Aj . We want to define an elementary row operation matrix Q such that QB−1 =

B
−1

, or QB−1B = I. Therefore Q will be such that the elementary row operations turn B−1B
into an identity matrix, i.e., that turn the vector u into the unit vector el.

The main trick is that we do not need matrix multiplication to achieve it, considerably decreasing
the computational burden. Instead, we can simply apply the elementary row operations, focusing
only on the column u and the operations required to turn it into the unit vector el. This can be
achieved by:

1. First, for each i ̸= l, multiply the lth row by −ui

ul
and add to the ith row. This replaces ui

with zero for all i ∈ I \ {l}.

2. Then, divide the lth row by ul. This replaces ul with one.

We can restate the simplex method in its revised form. This is presented in Algorithm 2.

Notice that in Algorithm 2, apart from the initialisation step, no linear systems are directly solved.
Instead, elementary row operations (ERO) are performed, leading to computational savings.
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Algorithm 2 Revised simplex method

1: initialise. Initial basis B, associated BFS x, and B−1 are available.
2: Calculate p⊤ = c⊤BB

−1 and cj = cj − p⊤Aj for j ∈ IN .
3: while cj < 0 for some j ∈ N do
4: Choose some j for which cj < 0. Calculate u = B−1Aj .
5: if u ≤ 0 then
6: return z = −∞.
7: else
8: θ = mini∈IB :ui>0

{
xB(i)

ui

}
and l = argmini∈IB :ui>0

{
xB(i)

ui

}

9: Set xj = θ and xB = x− θu.
10: Form the matrix [B−1 |u] and perform EROs to convert it to [B

−1 | el].
11: Make IB = IB \ {l} ∪ {j} and B−1 = B

−1
.

12: Calculate p⊤ = c⊤BB
−1 and cj = cj − p⊤Aj for all j ∈ IN = J \ IB .

13: end if
14: end while
15: return optimal basis IB and optimal solution x.

The key feature of the revised simplex method is a matter of representation and, thus, memory
allocation savings. Algorithm 2 only requires keeping in memory a matrix of the form

[
p | p⊤b

B−1 | u

]

which, after each series of elementary row operations, yields not only B
−1

but also the updated

simplex multipliers p and p⊤b = c⊤BB
−1
b = c⊤BxB , which represents the objective function value of

the new basic feasible solution x = [xB , xN ]. These savings will become obvious once we discuss
the tabular (or non-revised) version of the simplex method.

Three main issues arise when considering the efficiency of implementations of the simplex method,
namely, matrix (re)inversion, representation in memory, and the use of matrix decomposition
strategies.

• Reinversion: localised updates such as EROs have the side effect of accumulating truncation
and round-off error. To correct this, solvers typically rely on periodically recalculating B−1,
which, although costly, can avoid numerical issues.

• Representation: A sparse representation of Qn = Q1Q2 . . . Qk−1 can be kept instead of

updating B−1. Recall that u = B
−1
Aj = QB−1Aj . For larger problems, this means a

trade-off between memory allocation and the number of matrix-matrix multiplications.

• Decomposition: Decomposed (e.g., LU decomposition) forms of B are used to improve ef-
ficiency in storage and the solution of the linear systems to exploit the typical sparsity of
linear programming problems.

4.2.3 Tableau representation

The tableau representation of the simplex method is useful as a concept presentation tool. It
consists of a naive memory-intensive representation of the problem elements as they are iterated
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between each basic feasible solution. However, it is a helpful representation from a pedagogical
standpoint and will be useful for explaining further concepts in the upcoming chapters.

In contrast to the revised simplex method, instead of updating only B−1, we consider the complete
matrix

B−1[A | b] =
[
B−1A1, . . . , B

−1An | B−1b
]
.

Furthermore, we adjoint a row representing the reduced cost vector c⊤ = c⊤ − c⊤BB−1A and the
negative of the objective function value for the current basis, −cBxB = −c⊤BB−1b, a row often
referred to as the zeroth row. The reason why we consider the negative sign is that it allows for a
simple updating rule for the zeroth row, by performing elementary row operations to make the jth

element, associated with the nonbasic variable in B that becomes basic in B, zero.

The full tableau representation is given by

c⊤ − c⊤BB−1A −c⊤BB−1b
B−1A B−1b

⇒

c1 · · · cn −cBxB
xB(1)

B−1A1 · · · B−1An

...
xB(m)

In this representation, we say that the jth column associated with the nonbasic variable to become
basic is the pivot column u. Notice that, since the tableau exposes the reduced costs cj , j ∈ IN , it
allows for trivially applying the greedy pricing strategy (by simply choosing the variables with a
negative reduced cost with the largest absolute value).

The lth row associated with the basic variable selected to leave the basis is the pivot row. Again, the
tableau representation facilitates the calculation of the ratios used in choosing the basic variable
l to leave the basis since it amounts to simply calculating the ratios between the elements on the
rightmost column and those in the pivot column, disregarding those that present entries less or
equal than zero and the zeroth row. The row with the minimal ratio will be the row associated
with the current basic variable leaving the basis.

Once a pivot column and a pivot row have been defined, it is a matter of performing elemental
row operations utilising the pivot row to turn the pivot column into the unit vector el and turn
to zero the respective zeroth element (recall that basic variables have zero reduced costs). This is
the same as using elementary row operations using the pivot row to turn all elements in the pivot
column zero, except for the pivot element ul, which is the intersection of the pivot row and the
pivot column, that must be turned into one. The above highlights the main purpose of the tableau
representation, which is to facilitate calculation by hand.

Notice that, as we have seen before, performing elementary row operations to convert the pivot

column u into el converts B
−1[A | b] into B−1

[A | b]. Analogously, turning the entry associated
with the pivot column u in the zeroth row to zero converts [c⊤ − c⊤BB

−1A | −c⊤BB−1b] into

[c⊤ − c⊤
B
B

−1
A | −c⊤

B
B

−1
b].

Let us return to the paint factory example from Section 1.2.1, which in its standard form can be
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written as

max. z = 5x1 + 4x2 (4.2)

s.t.: 6x1 + 4x2 + x3 = 24 (4.3)

x1 + 2x2 + x4 = 6 (4.4)

x2 − x1 + x5 = 1 (4.5)

x2 + x6 = 2 (4.6)

x1, . . . , x6 ≥ 0. (4.7)

The sequence of tableaus for this problem is given by

x1 x2 x3 x4 x5 x6 RHS
z -5 -4 0 0 0 0 0
x3 6 4 1 0 0 0 24
x4 1 2 0 1 0 0 6
x5 -1 1 0 0 1 0 1
x6 0 1 0 0 0 1 2

x1 x2 x3 x4 x5 x6 RHS
z 0 -2/3 5/6 0 0 0 20
x1 1 2/3 1/6 0 0 0 4
x4 0 4/3 -1/6 1 0 0 2
x5 0 5/3 1/6 0 1 0 5
x6 0 1 0 0 0 1 2

x1 x2 x3 x4 x5 x6 RHS
z 0 0 3/4 1/2 0 0 21
x1 1 0 1/4 -1/2 0 0 3
x2 0 1 -1/8 3/4 0 0 3/2
x5 0 0 3/8 -5/4 1 0 5/2
x6 0 0 1/8 -3/4 0 1 1/2

The bold terms in the tableau represent the pivot elements at each iteration, i.e., the intersection of
the pivot column and row. From the last tableau, we see that the optimal solution is x∗ = (3, 3/2).
Notice that we applied a change in signs in the objective function coefficients, turning it into a
minimisation problem; also notice that this makes the values of the objective function in the RHS
column appear as positive, although it should be negative as we are in fact minimising −5x1−4x2,
for which x∗ = (3, 3/2) evaluates as −21. As we have seen, the tableau shows −cBxB , hence why
the optimal tableau displays 21 in the first row of the RHS column.

4.2.4 Generating initial feasible solutions (two-phase simplex)

We now consider the issue of converting general linear programming problems into the standard
form they are assumed to be for the simplex method. As we mentioned before, problems with
constraints of the form Ax ≤ b can be converted to standard form by simply adding nonnegative
slack variables s ≥ 0 (recall that b ≥ 0 can be assumed without loss of generality). In addition, we
can trivially obtain an initial basic feasible solution (BFS) with (x, s) = (0, b), with B = I, as

Ax ≤ b⇒ Ax+ s = b.
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Notice that this is equivalent to assuming all original problem variables (i.e., those that are not
slack variables) to be initialised as zero (i.e., nonbasic) since this is a trivially available initial
feasible solution. However, this method does not work for constraints of the form Ax ≥ b, as in
this case, the transformation would take the form

Ax ≥ b⇒ Ax− s = b⇒ Ax− s = b.

Notice that making the respective slack variable basic would yield an initial value of −b, making
the basic solution not feasible.

For more general problems, however, this might not be possible since simply setting the original
problem variables to zero might not yield a feasible solution that can be used as a BFS. To
circumvent that, we rely on artificial variables to obtain a BFS.

Let P : min.
{
c⊤x : Ax = b, x ≥ 0

}
, which can be achieved with appropriate transformation (i.e.,

adding nonnegative slack to the inequality constraints) and assumed (without loss of generality)
to have b ≥ 0. Then, finding a BFS for P amounts to finding a zero-valued optimal solution to the
auxiliary problem

(AUX) : min.

m∑

i=1

yi

s.t.: Ax+ y = b

x, y ≥ 0.

The auxiliary problem AUX is formed by including one artificial variable for each constraint in P ,
represented by the vector y of so-called artificial variables. Notice that the problem is represented
in a somewhat compact notation, in which we assume that all slack variables used to convert
inequalities into equalities have already been incorporated in the vector x and matrix A, with
the artificial variables y playing the role of “slacks” in AUX that can be assumed to be basic
and trivially yield an initial BFS for AUX. In principle, one does not need artificial variables
for the rows in which there is a positive signed slack variable (i.e., an originally less-or-equal-than
constraint), but this representation allows for compactness.

Solving AUX to optimality consists of trying to find a BFS in which the value of the artificial vari-
ables is zero since, in practice, the value of the artificial variables measures a degree of infeasibility
of the current basis in the context of the original problem P . This means that a BFS in which the
artificial variable plays no roles was found and can be used as an initial BFS for solving P . On the
other hand, if the optimal for AUX is such that some of the artificial variables are nonzero, then
this implies that there is no BFS for AUX in which the artificial variables are all zero, or, more
specifically, there is no BFS for P , indicating that the problem P is infeasible.

Assuming that P is feasible and y = 0, two scenarios can arise. The first is when the optimal basis
B for AUX is composed only of columns Aj of the original matrix A, with no columns associated
with the artificial variables. Then B can be used as an initial starting basis without any issues.

The second scenario is somewhat more complicated. Often, AUX is a degenerate problem and the
optimal basis B may contain some of the artificial variables y. This then requires an additional
preprocessing step, which consists of the following:

(1) Let AB(1), . . . , AB(k) be the columns A in B, which are linearly independent. We know
from earlier (c.f. Theorem 2.4) that, being A full-rank, we can choose additional columns
AB(k+1), . . . , AB(m) that will span Rm.
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(2) Select the lth artificial variable yl = 0 and select a component j in the lth row with nonzero
B−1Aj and use elementary row operations to include Aj in the basis. Repeat this m − k
times.

The procedure is based on several ideas we have seen before. Since
∑m

i=1 yi is zero at the optimal,
there must be a BFS in which the artificial variables are nonbasic (which is what (1) is referring
to). Thus, step (2) can be repeated until a basis B is formed and includes none of the artificial
variables.

Some interesting points are worth highlighting. First, notice that B−1AB(i) = ei, i = 1, . . . , k.

Since k < l, the lth component of each of these vectors is zero and will remain so after performing
the elementary row operations. In turn, the lth entry of B−1Aj is not zero, and thus Aj is linearly
independent to AB(1), . . . , AB(k).

However, it might be so that we find zero elements in the lth row. Let g be the lth row of B−1A
(i.e., the entries in the tableau associated with the original problem variables). If g is the null
vector, then gl is zero, and the procedure fails. However, note that g⊤A = 0 = g⊤Ax = g⊤b,
implying that g⊤Ax = g⊤b is redundant can be removed altogether.

This process of generating initial BFS is often referred to as Phase I of the two-phase simplex
method. Phase II consists of employing the simplex method as we developed it, utilising the BFS
found in Phase I as a starting basis.

4.3 Column geometry of the simplex method

Let us try to develop a geometrical intuition on why it is so that the simplex method is remarkably
efficient in practice. As we have seen in Theorem 4.2, although the simplex method is guaranteed
to converge, the total number of steps the algorithm might need to take before convergence grows
exponentially with the number of variables and constraints, since the number of steps depends on
the number of vertices of the polyhedral set that represents the feasible region of the problem.

However, it turns out that, in practice, the simplex method typically requires O(m) iterations
(recall that m is the number of rows in the matrix A), being one of the reasons why it has
experienced tremendous success and is one of the most mature and reliable methods when it comes
to optimisation.

To develop a geometrical intuition on why this is the case, let us first consider an equivalently
reformulated problem P :

P : min. z

s.t.: Ax = b

c⊤x = z
n∑

j=1

xj = 1

x ≥ 0.

In this reformulation, we make the objective function an auxiliary variable, so it can be easily
represented on a real line at the expense of adding an additional constraint c⊤x = z. Furthermore,
we normalise the decision variables so they add to one (notice that this implies a bounded feasible



4.3. Column geometry of the simplex method 73

set). Notice that problem P can be equivalently represented as

P : min. z

s.t.: x1

[
A1

c1

]
+ x2

[
A2

c2

]
+ · · ·+ xn

[
An

cn

]
=

[
b
z

]

n∑

j=1

xj = 1

x ≥ 0.

This second formulation exposes one interesting interpretation of the problem. Solving P is akin to
finding a set of weights x that makes a convex combination (c.f. Definition 2.7) of the columns of
A such that it constructs (or matches) b in a way that the resulting combination of the respective
components of the vector c is minimised. Now, let us define some nomenclature that will be useful
in what follows.

Definition 4.4 (k-dimensional simplex). A collection of vectors y1, . . . , yk+1 are affinely indepen-
dent if k ≤ n and y1 − yk+1, . . . , yk − yk+1 are linearly independent. The convex hull of k + 1
affinely independent vectors is a k-dimensional simplex.

Definition 4.4 is precisely the inspiration for the name of the simplex method. We know that only
m+ 1 components of x will be different than zero since that is the number of constraints we have
and, thus, the size of a basis in this case. Thus, a BFS is formed by m+ 1 (Ai, 1) columns, which
in turn are associated with (Ai, ci) basic points.

Figure 4.2 provides an illustration of the concept. In this, we have that m = 2, so each column
Aj represents a point in a two-dimensional plane. Notice that a basis requires three points (Ai, ci)
and forms a 3-simplex. A BFS is a selection of three points (Ai, ci) such that b, also illustrated
in the picture, can be formed by a convex combination of the (Ai, ci) forming the basis. This will
be possible if b happens to be inside the 3-simplex formed by these points. For example, in Figure
4.2, the basis formed by columns {2, 3, 4} is a BFS, while the basis {1, 2, 3} is not.

A1

(A1, c1)

A2

(A2, c2)

(A3, c3)

A3

A4

(A4, c4)

b

z

Figure 4.2: A solution x is a convex combinations of (Ai, ci) such that Ax = b.

We now can add a third dimension to the analysis representing the value of z. For that, we will
use Figure 4.3. As can be seen, each selection of basis creates a tilt in the three-dimensional
simplex, such that the point b is met precisely at the height corresponding to its value in the z
axis. This allows us to compare bases according to their objective function value. And, since we
are minimising, we would like to find the basis that has its respective simplex crossing b at the
lowermost point.
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z

F
G

H

I

B

C

D

E

b

Figure 4.3: A solution x is a convex combinations of (Ai, ci) such that Ax = b.

Notice that in Figure 4.3, although each facet is a basic simplex, only three are feasible (BCD,
CDF , and DEF ). We can also see what one iteration of the simplex method does under this
geometrical interpretation. Moving between adjacent basis means that we are replacing one vertex
(say, C) with another (say, E) considering the potential for decrease in value in the z axis (rep-
resented by the difference between points H and G onto the z axis). You can also see the notion
of pivoting: since we are moving between adjacent bases, two successive simplexes share an edge
in common, consequently, they pivot around that edge (think about the movement of the edge C
moving to the point E while the edge DF remains fixed).

1

6

3
2

74

8

5

b

Figure 4.4: Pivots from initial basis [A3, A6] to [A3, A5] and to the optimal basis [A8, A5]

Now we are ready to provide an insight into why the simplex method is often so efficient. The main
reason is associated with the ability that the method possesses of skipping bases in favour of those
with most promising improvement. To see that, consider Figure 4.4, which is a 2-dimensional
schematic projection of Figure 4.3. By using the reduced costs to guide the choice of the next
basis, we tend to choose the steepest of the simplexes that can provide reductions in the objective
function value, which has the side effect of allowing for skipping several basis that would have to be
otherwise considered. This creates a “sweeping effect”, in which allows the method to find optimal



4.3. Column geometry of the simplex method 75

solutions in fewer pivots than vertices. Clearly, this can be engineered to be prevented, as there
are examples purposely constructed to force the method to consider every single vertex, but the
situation illustrated in Figure 4.4 is by far the most common in practice.
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4.4 Exercises

Exercise 4.1: Properties of the simplex algorithms

Consider the simplex method applied to a standard form minimization problem, and assume that
the rows of the matrix A are linearly independent. For each of the statements that follow, give
either a proof or a counter example.

(a) An iteration of the simplex method might change the feasible solution while leaving the cost
unchanged.

(b) A variable that has just entered the basis cannot leave in the very next iteration.

(c) If there is a non-degenerate optimal basis, then there exists a unique optimal basis.

Exercise 4.2: The simplex method

Consider the problem

max. 40x1 + 60x2

s.t.: 2x1 + x2 ≤ 7

x1 + x2 ≤ 4

x1 + 3x2 ≤ 9

x1, x2 ≥ 0.

A feasible point for this problem is (x1, x2) = (0, 3). Formulate the problem as a minimisation
problem in standard form and verify whether or not this point is optimal. If not, solve the problem
by using the simplex method.

Exercise 4.3: Solving a tableau

Consider a linear programming problem in standard form, described in terms of the following
tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

z 0 0 0 δ 3 γ ξ 0

x2 0 1 0 α 1 0 3 β

x3 0 0 1 -2 2 η -1 2

x1 1 0 0 0 -1 2 1 3

The entries α, β, γ, δ, η and ξ in the tableau are unknown parameters. Furthermore, let B be the
basis matrix corresponding to having x2, x3, and x1 (in that order) be the basic variables. For
each one of the following statements, find the ranges of values of the various parameters that will
make the statement to be true.

(a) Phase II of the Simplex method can be applied using this as an initial tableau.

(b) The corresponding basic solution is feasible, but we do not have an optimal basis.
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(c) The corresponding basic solution is feasible and the first Simplex iteration indicates that the
optimal cost is −∞.

(d) The corresponding basic solution is feasible, x6 is a candidate for entering the basis, and
when x6 is the entering variable, x3 leaves the basis.

(e) The corresponding basic solution is feasible, x7 is a candidate for entering the basis, but if it
does, the objective value remains unchanged.

Exercise 4.4: Two-phase simplex method

Solve the problem below using the two-phase simplex method. What is your conclusion about the
feasibility of the problem? Verify your results by drawing the feasible region.

max. 5x1 + x2

s.t.: 2x1 + x2 ≥ 5

x2 ≥ 1

2x1 + 3x2 ≤ 12

x1, x2 ≥ 0.
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Chapter 5

Linear Programming Duality -
Part I

5.1 Formulating duals

In this chapter, we will discuss the notion of duality in the context of linear programming problems.
Duality can be understood as a toolbox of technical results that makes available a collection of
techniques and features that can be exploited to both further understand characteristics of the
optimal solution and to devise specialised methods for solving linear programming problems.

5.1.1 Motivation

Let us define the notation we will be using throughout the next chapters. As before, let c ∈ Rn,
b ∈ Rm, A ∈ Rm×n, and P be the standard form linear programming problem

(P ) : min. c⊤x

s.t.: Ax = b

x ≥ 0,

which we will refer to as the primal problem. In mathematical programming, we say that a
constraint has been relaxed if it has been removed from the set of constraints. With that in mind,
let us consider a relaxed version of P , where Ax = b is replaced with a violation penalty term
p⊤(b−Ax). This leads to the following problem:

g(p) = min.
x≥0

{
c⊤x+ p⊤(b−Ax)

}
,

which has the benefit of not having equality constraints explicitly represented, but only implicit
by means of a penalty term. This term is used to penalise the infeasibility of the constraints in the
attempt to steer the solution of the relaxed problem towards the solution to P . Recalling that our
main objective is to solve P , we are interested in the values (or prices, as they are often called) for
p ∈ Rm that make P and g(p) equivalent.

Let x be the optimal solution to P . Notice that, for any p ∈ Rm, we have that

g(p) = min.
x≥0

{
c⊤x+ p⊤(b−Ax)

}
≤ c⊤x+ p⊤(b−Ax) = c⊤x,

i.e., g(p) is a lower bound on the optimal value c⊤x. The inequality holds because, although x is
optimal for P , it might not be optimal for g(p) for an arbitrary vector p. The rightmost equality
is a consequence of x ∈ P , i.e., the feasibility of x implies that Ax = b.

79
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We can use an optimisation-based approach to try to find an optimal lower bound, i.e., the tightest
possible lower bound for P . This can be achieved by solving the dual problem D formulated as

(D) : max.
p

g(p).

Notice that D is an unconstrained problem to which a solution proves the tightest lower bound on
P (say, at p). Also, notice how the function g(p) : Rm → R has embedded on its evaluation the
solution of a linear programming problem with x ∈ Rn as decision variables for a fixed p, which is
the argument given to the function g.

We will proceed in this chapter developing the analytical framework that allows us to pose the key
result in duality theory, which states that

g(p) = c⊤x.

That is, we will next develop the results that guarantee the equivalence between primal and dual
representations. This will be useful for interpreting properties associated with the optimal primal
solution x from the associated optimal prices p. Furthermore, we will see in later chapters that
linear programming duality can be used as a framework for replacing constraints with equivalent
representations, which is a useful procedure in many settings, including developing alternative
solution strategies also based on linear programming.

5.1.2 General form of duals

Now, let us focus on developing a formulation for dual problems that is based on linear programming
as well. Using the definition of D, we notice that

g(p) = min.
x≥0

{
c⊤x+ p⊤(b−Ax)

}

= p⊤b+min.
x≥0

{
c⊤x− p⊤Ax

}

= p⊤b+min.
x≥0

{
(c⊤ − p⊤A)x

}
.

As x ≥ 0, the rightmost problem can only be bounded if (c⊤ − p⊤A) ≥ 0. This gives us a linear
constraint that can be used to enforce the existence of a solution for

min.
x≥0

{
(c⊤ − p⊤A)x

}
.

With that in mind, we can equivalently reformulate D as

(D) : max. p⊤b

s.t.: p⊤A ≤ c⊤.

Notice that D is a linear programming problem with m variables (one per constraint of the primal
problem P ) and n constraints (one per variable of P ). As you might suspect, if you were to repeat
the analysis, looking at D as the “primal” problem, you would end with a dual that is exactly P .
For this to become more apparent, let us first define more generally the rules that dictate what
kind of dual formulations are obtained for different types of primal problems in terms of their
original (i.e., not in standard) form.
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In the more general case, let P be defined as

(P ) : min. c⊤x

s.t.: Ax ≥ b.

Notice that the problem P can be equivalently reformulated as

(P ) : min. c⊤x

s.t.: Ax− s = b

s ≥ 0.

Let us focus on the constraints in the reformulated version of P , which can be written as

[A | −I]
[
x

s

]
= b.

We will apply the same procedure as before, being our constraint matrix [A | −I] in place of A
and [x | s]⊤ our vector of variables, in place of x. Using analogous arguments, we now require that
c⊤ − p⊤A = 0, so g(p) is finite. Notice that this is a slight deviation from before, but in this case,
we have that x ∈ Rn, so c⊤ − p⊤A = 0 is the only condition that allows the inner problem in g(p)
to have a finite solution. Then, we obtain the following conditions to be imposed to our dual linear
programming formulation

p⊤[A | −I] ≤ [c⊤ | 0⊤]
c⊤ − p⊤A = 0,

Combining them all and redoing the previous steps for obtaining a dual formulation, we arrive at

(D) : max. p⊤b

s.t.: p⊤A = c⊤

p ≥ 0.

Notice how the change in the type of constraints in the primal problem P lead to additional
nonnegative constraints in the dual variables p. Similarly, the absence of explicit nonnegativity
constraints in the primal variables x lead to equality constraints in the dual problem D, as opposed
to inequalities.

Table 5.1 provides a summary which allows one to identify the resulting formulation of the dual
problem based on the primal formulation, in particular regarding its type (minimisation or max-
imisation), constraint types and variable domains.

For converting a minimisation primal problem into a (maximisation) dual, one must read the table
from left to right. That is, the independent terms (b) become the objective function coefficients,
greater or equal constraints become nonnegative variables, and so forth. However, if the primal
problem is a maximisation problem, the table must be read from right to left. For example, in
this case, less-or-equal-than constraints would become nonnegative variables instead, and so forth.
It takes a little practice to familiarise yourself with this table, but it is a really useful resource to
obtain dual formulations from primal problems.

One remark to be made at this point is that, as is hopefully clearer now, the conversion of primal
problems into duals is symmetric, meaning that reapplying the rules in Table 5.1 would take you
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Primal (dual) Dual (primal)

minimise maximise

Independent terms Obj. function coef.

Obj. function coef. Independent terms

i-th row of constraint coef. i-th column of constraint coef.

i-th column of constraint coef. i-th row of constraint coef.

Constraints Variables

≥ ≥ 0

≤ ≤ 0

= ∈ R
Variables Constraints

≥ 0 ≤
≤ 0 ≥
∈ R =

Table 5.1: Primal-dual conversion table

from the obtained dual back to the original primal. This is a property of linear programming
problems called being self dual. Another remark is that equivalent reformulations made in the
primal lead to equivalent duals. Specifically, transformations that replace variables x ∈ R with
x+−x−, where x+, x− ≥ 0, introduce nonnegative slack variables, or remove redundant constraints
all lead to equivalent duals.

For example, recall that the dual formulation for the primal problem

(P ) : min. c⊤x

s.t.: Ax ≥ b
x ∈ Rn

is given by

(D) : max. p⊤b

s.t.: p ≥ 0

p⊤A = c⊤.

Now suppose we equivalently reformulate the primal problem to become

(P ′) : min. c⊤x+ 0⊤s

s.t.: Ax− s = b

x ∈ Rn, s ≥ 0.

Then, using Table 5.1, we would obtain the following dual formulation, which is equivalent to D

(D′) : max. p⊤b

s.t.: p ∈ Rm

p⊤A = c⊤

−p ≤ 0.
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Analogously, suppose we were to equivalently reformulate P as

(P ′′) : min. c⊤x+ − c⊤x−

s.t.: Ax+ −Ax− ≥ b
x+ ≥ 0, x− ≥ 0.

Then, the dual formulation for P ′′ would be

(D′′) : max. p⊤b

s.t.: p ≥ 0

p⊤A ≤ c
−p⊤A ≤ −c⊤,

which is also equivalent to D.

5.2 Duality theory

We will now develop the technical results associated with duality that will be the kingpin for its
use as a framework for devising solution methods and interpreting optimal solution properties.

5.2.1 Weak duality

Weak duality is the property associated with the bounding nature of dual feasible solutions. This
is stated in Theorem 5.1.

Theorem 5.1 (Weak duality). Let x be a feasible solution to (P ) : min.
{
c⊤x : Ax = b, x ≥ 0

}
and

p be a feasible solution to (D) : max.
{
p⊤b : p⊤A ≤ c⊤

}
, the dual problem of P . Then c⊤x ≥ p⊤b.

Proof. Let I = {i}mi=1 and J = {j}nj=1. For any x and p, define

ui = pi(a
⊤
i x− bi) and vj = (cj − p⊤Aj)xj .

Notice that ui ≥ 0 for i ∈ I and vj ≥ 0 for j ∈ J , since each pair of terms will have the same
sign (you can see that from Table 5.1 and assuming xj to be the dual variable associated with
p⊤A ≤ c⊤). Thus, we have that

0 ≤
∑

i∈I

ui +
∑

j∈J

vj = [p⊤Ax− p⊤b] + [c⊤x− p⊤Ax] = c⊤x− p⊤b.

Let us also pose some results that are direct consequences of Theorem 5.1, which are summarised
in Corollary 5.2.

Corollary 5.2 (Consequences of weak duality). The following are immediate consequences of
Theorem 5.1:

(1) If the optimal value of P is −∞ (i.e., P is unbounded), then D must be infeasible;

(2) if the optimal value of D is ∞ (i.e., D is unbounded), then P must be infeasible;
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(3) let x and p be feasible to P and D, respectively. Suppose that p⊤b = c⊤x. Then x is optimal
to P and p is optimal to D.

Proof. By contradiction, suppose that P has optimal value −∞ and that D has a feasible solution
p. By weak duality, p⊤b ≤ c⊤x = −∞, i.e., a contradiction. Part (2) follows a symmetric argument.

Part (3): let x be an alternative feasible solution to P . From weak duality, we have c⊤x ≥ p⊤b =
c⊤x, which proves the optimality of x. The optimality of p follows a symmetric argument.

Notice that Theorem 5.1 provides us with a bounding technique for any linear programming prob-
lem. That is, for a given pair of primal and dual feasible solutions, x and p, respectively, we have
that

p⊤b ≤ c⊤x∗ ≤ c⊤x,
where c⊤x∗ is the optimal objective function value.

Corollary 5.2 also provides an alternative way of identifying infeasibility by means of linear pro-
gramming duals. One can always use the unboundedness of a given element of a primal-dual pair to
state the infeasibility of the other element in the pair. That is, an unbounded dual (primal) implies
an infeasible primal (dual). However, the reverse statement is not as conclusive. Specifically, an
infeasible primal (dual) does not necessarily imply that the dual (primal) is unbounded, but does
imply it to be either infeasible or unbounded.

5.2.2 Strong duality

This bounding property can also be used as a certificate of optimality, in case they match in value.
This is precisely the notion of strong duality, a property that is inherent to linear programming
problems. This is stated in Theorem 5.3.

Theorem 5.3 (Strong duality). If (P ) : min.
{
c⊤x : Ax = b, x ≥ 0

}
has an optimal solution, so

does its dual (D) : max.
{
p⊤b : p⊤A ≤ c⊤

}
and their respective optimal values are equal.

Proof. Assume P is solved to optimality, with optimal solution x and basis B. Let xB = B−1b. At
the optimal, the reduced costs are c⊤ − c⊤BB−1A ≥ 0. Let p = c⊤BB

−1. We then have p⊤A ≤ c⊤,
which shows that p is feasible to D. Moreover,

p⊤b = c⊤BB
−1b = c⊤BxB = c⊤x, (5.1)

which, in turn, implies the optimality of p (cf. Corollary 5.2 (3)).

The proof of Theorem 5.3 reveals something remarkable relating the simplex method and the dual
variables p. As can be seen in (5.1), for any primal feasible solution x, an associated dual (not
necessarily) feasible solution p can be immediately recovered. If the associated dual solution is also
feasible, then Theorem 5.3 guarantees that optimality ensues.

This means that we can interchangeably solve either a primal or a dual form of a given problem,
considering aspects related to convenience and computational ease. This is particularly useful
in the context of the simplex method since the prices p are readily available as the algorithm
progresses. In the next section, we will discuss several practical uses of this relationship in more
detail. For now, let us halt this discussion for a moment and consider a geometrical interpretation
of duality in the context of linear programming.
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5.3 Geometric interpretation of duality

Linear programming duality has an interesting geometric interpretation that stems from the much
more general framework of Lagrangian duality (of which linear programming duality is a special
case) and its connection to optimality conditions, topics that will be further explored in Part II.
For now, let us focus on how linear programming duality can be interpreted in the context of
“balancing forces”.

First, let x be the optimal solution of primal problem P in the form

(P ) : min. c⊤x

s.t.: a⊤i x ≥ bi, ∀i ∈ I.

Imagine that there is a particle within the polyhedral set representing the feasible region of P and
that this particle is subjected to a force represented by the vector −c. Notice that this is equivalent
to minimising the function z = c⊤x within the polyhedral set

{
a⊤i x ≥ bi

}
i∈I

representing the
feasible set of P . Assuming that the feasible set of P is bounded in the direction −c, this particle
will eventually come to a halt after hitting the “walls” of the feasible set, at a point where the
pulling force −c and the reaction of these walls reach an equilibrium. We can think of x as this
stopping point. This is illustrated in Figure 5.1.

ca1

a2

a3

p1a1
p2a2

x

Figure 5.1: A geometric representation of duality for linear programming problems

We can then think of the dual variables p as the multipliers applied to the normal vectors asso-
ciated with the hyperplanes (i.e., the walls) that are in contact with the particle to achieve this
equilibrium. Hence, these multipliers p will be such that

c =
∑

i∈I

piai, for some pi ≥ 0, i ∈ I,

which is precisely the dual feasibility condition (i.e., constraint) associated with the dual of P ,
given by

D : max.
{
p⊤b : p⊤A = c, p ≥ 0

}
.

And, dual feasibility, as we seen before, implies the optimality of x.

5.3.1 Complementary slackness

One point that must be noticed is that, for the constraints that are not active at the optimal
point x (i.e., the walls that are not exerting resistance to the particle at the equilibrium point),
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the multipliers p must be set to zero. That is, we have that

p⊤b =
∑

i∈I

pibi =
∑

i∈I

pi(a
⊤
i x) = c⊤x,

which again implies the optimality of p (cf. Corollary 5.2 (3)). This geometrical insight leads to
another key result for linear programming duality, which is the notion of complementary slackness.

Theorem 5.4 (Complementary slackness). Let x be a feasible solution for

(P ) : min.
{
c⊤x : Ax = b, x ≥ 0

}

and p be a feasible solution for

(D) : max.
{
p⊤b : p⊤A ≤ c⊤

}
.

The vectors x and p are optimal solutions to P and D, respectively, if and only if pi(a
⊤
i x− bi) =

0,∀i ∈ I, and (cj − p⊤Aj)xj = 0, ∀j ∈ J .

Proof. From the proof of Theorem 5.1 and with Theorem 5.3 holding, we have that

pi(a
⊤
i x− bi) = 0,∀i ∈ I, and (cj − p⊤Aj)xj = 0, ∀j ∈ J.

In turn, if these hold, then x and p are optimal (cf. Corollary 5.2 (3)).

Theorem 5.4 exposes an important feature related to optimal solutions. Notice that a⊤i x − bi
represents the slack value of constraint i ∈ I. Thus, under the assumption of nondegeneracy,
pi(a

⊤
i x−bi) = 0,∀i ∈ I implies that for each constraint i ∈ I, either the dual variable pi associated

with constraint is zero, or the associated slack value a⊤i x− bi is zero.
For nondegenerate basic feasible solutions (BFS) (i.e., xj > 0, ∀j ∈ IB , where IB is the set of basic
variable indices), complementary slackness determines a unique dual solution. That is

(cj − p⊤Aj)xj = 0, which yields cj = p⊤Aj , ∀j ∈ IB ,

which has a unique solution p⊤ = c⊤BB
−1, as the columns Aj of be are assumed to be linearly

independent. In the presence of degeneracy, this is not the case anymore, typically implying that
a degenerate optimal BFS will have multiple associated feasible dual variables.

5.3.2 Dual feasibility and optimality

Combining what we have seen so far, the conditions for a primal-dual pair (x, p) to be optimal to
their respective primal (P ) and dual (D) problems are given by

a⊤i x ≥ bi, ∀i ∈ I (primal feasibility) (5.2)

pi = 0, ∀i /∈ I0 (complementary conditions) (5.3)
∑

i∈I

p⊤i ai = c (dual feasibility I) (5.4)

pi ≥ 0, (dual feasibility II) (5.5)



5.4. The dual simplex method 87
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Figure 5.2: A is both primal and dual infeasible; B is primal feasible and dual infeasible; C is
primal and dual feasible; D is degenerate.

where I0 =
{
i ∈ I, a⊤i x = bi

}
are the active constraints. From (5.2)–(5.5), we see that the opti-

mality of the primal-dual pair has two main requirements. The first is that x must be (primal)
feasible. The second, expressed as

∑

i∈I0

piai = c, pi ≥ 0,

is equivalent to requiring c to be expressed as a nonnegative linear combination (also known as
a conic combination) of the active constraints. This has a nice geometrical interpretation: dual
feasibility can be interpreted as having the vector c inside the “cone” formed by the normal vectors
of the active constraints, which in turn is a necessary condition for the existence of an equilibrium,
as described in Figure 5.1. Figure 5.2 illustrates this fact.

Notice how in Figure 5.2 neither points A or B are dual feasible, while C represents a dual feasible
point, being thus the optimal for the problem depicted. One interesting point to notice is D.
Although not feasible, it allows us to see an important effect that degeneracy may cause. Assume
for a moment that D is feasible. Then, dual feasibility becomes dependent on the basis representing
the vertex. That is, while the bases IB = {1, 5} and IB = {1, 6} are dual feasible, the basis
IB = {5, 6} is not. As we will see, just as it is the case with the simplex method, the dual simplex
method, which we will discuss in the next section, might be subject to stalling and cycling from
the presence of primal degeneracy, which in turn may also leads to multiple dual feasible (primal
optimal) solutions.

5.4 The dual simplex method

In general, solution methods in mathematical programming can be either primal methods, in which
primal feasibility of an initial solution is maintained while seeking for dual feasibility (i.e., primal
optimality); or dual methods, where dual feasibility is maintained while seeking for primal feasibility
(i.e., dual optimality).

As we have seen in Chapter 4, the original (or primal) simplex method iterated from an initial
basic feasible solution (BFS) until the optimality condition

c = c⊤ − cBB−1A ≥ 0
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was observed. Notice that this is precisely the dual feasibility condition p⊤A ≤ c.
Being a dual method, the dual version of the simplex method, or the dual simplex method, considers
conditions in reverse order. That is, it starts from an initial dual feasible solution and iterates in
a manner that the primal feasibility condition B−1b ≥ 0 is sought for, while c ≥ 0, or equivalently,
p⊤A ≤ c, is maintained.

To achieve that, one must revise the pivoting of the primal simplex method such that the variable
to leave the basis is some i ∈ IB , with xB(i) < 0, while the variable chosen to enter the basis is
some j ∈ IN , such that c ≥ 0 is maintained.

Consider the lth simplex tableau row for which xB(i) < 0 of the form [v1, . . . , vn, xB(i)]; i.e., vj is

the lth component of B−1Aj .

For each j ∈ IN for which vj < 0, we pick

j′ = argminj∈IN :vj<0

cj
|vj |

.

Pivoting is performed by employing elemental row operations to replace AB(i) with Aj in the basis.
This implies that cj ≥ 0 is maintained, since

cj
|vj |
≥ cj′

|vj′ |
⇒ cj − |vj |

cj′

|vj′ |
≥ 0⇒ cj + vj

cj′

|vj′ |
≥ 0, ∀j ∈ J.

Notice that it also justifies why we must only consider for entering the basis those variables for
which vj < 0. Analogously to the case in the primal simplex method, if we observe that vj ≥ 0
for all j ∈ J , then no limiting condition is imposed in terms the increase in the nonbasic variable
(i.e., an unbounded dual, which, according to Corollary 5.2 (2), implies the original problem is
infeasible).

Assuming that the dual is not unbounded, the termination of the dual simplex method is ob-
served when B−1b ≥ 0 is achieved, and primal-dual optimal solutions have been found, with
x = (xB , xN ) = (B−1b, 0) (i.e., the primal solution) and p = (pB , pN ) = (0, c⊤BB

−1) (dual).
Algorithm 3 presents a pseudocode for the dual simplex method.

Algorithm 3 Dual simplex method

1: initialise. Initial basis B and associated basic solution x.
2: while xB = B−1b < 0 for some component i ∈ IB do
3: Choose some l for which xB(l) < 0. Calculate u = B−1Aj .
4: if u ≥ 0 then
5: return z = +∞.
6: else
7: Form new basis B = B \ {l} ∪ {j′} where j′ = argminj∈IN :uj<0

cj
|uj |

8: Calculate xB = B−1b.
9: end if

10: end while
11: return optimal basis B and optimal solution x.
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To clarify some of the previous points, let us consider a numerical example. Consider the problem

min. x1 + x2

s.t.: x1 + 2x2 ≥ 2

x1 ≥ 1

x1, x2 ≥ 0.

The first thing we must do is convert the greater-or-equal-than inequalities into less-or-equal-than
inequalities and add the respective slack variables. This allows us to avoid the inclusion of artificial
variables, which are not required anymore since we can allow for primal infeasibility. This leads to
the equivalent standard form problem

min. x1 + x2

s.t.: − x1 − 2x2 + x3 = −2
− x1 + x4 = −1
x1, x2, x3, x4 ≥ 0.

Below is the sequence of tableaus after applying the dual simplex method to solve the problem.
The terms in bold font represent the pivot element (i.e., the intersection between the pivot row
and pivot column).

x1 x2 x3 x4 RHS

z 1 1 0 0 0

x3 -1 -2 1 0 -2

x4 -1 0 0 1 -1

x1 x2 x3 x4 RHS

z 1/2 0 1/2 0 -1

x2 1/2 1 -1/2 0 1

x4 -1 0 0 1 -1

x1 x2 x3 x4 RHS

z 0 0 1/2 1/2 -3/2

x2 0 1 -1/2 1/2 1/2

x1 1 0 0 -1 1

Figure 5.3 illustrates the progress of the algorithm both in the primal (Figure 5.3a) and in the dual
(Figure 5.3b) variable space. Notice how in the primal space the solution remains primal infeasible
until a primal feasible solution is reached, that being the optimal for the problem. Also, notice
that the coordinates of the dual variables can be extracted from the zeroth row of the simplex
tableau.

Some interesting features related to the progress of the dual simplex algorithm are worth highlight-

ing. First, notice that the objective function is monotonically increasing in this case, since xB(l)
cj′

|vj′ |
is added to −cBB−1b and xB(l) < 0, meaning that the dual cost increases (recall the convention of
having a minus sign so that the zeroth row correctly represent the objective function value, given
by the negative of the value displayed in the rightmost column). This illustrates how the solution
becomes gradually worse as it compromises optimality in the search for (primal) feasibility. For a



90 Chapter 5. Linear Programming Duality - Part I

0 1 2 3
x1

0

1

2

3
x 2

A

B

C

Constraints
Obj. function

(a) The primal-variable space

0.0 0.5 1.0 1.5
p1

0.0

0.5

1.0

1.5

p 2

Constraints
Obj. function

(b) The dual-variable space

Figure 5.3: The progress of the dual simplex method in the primal and dual space.

nondegenerate problem, this can also be used as an argument for eventual convergence since the
dual objective value can only increase and is bounded by the primal optimal value. However, in the
presence of dual degeneracy, that is, cj = 0 for some j ∈ IN in the optimal solution, the algorithm
can suffer from cycling. As we have seen before, that is an indication that the primal problem has
multiple optima.

The dual simplex method is often the best choice of algorithm, because it typically precludes
the need for a Phase I type of method as it is often trivial to find initial dual feasible solutions
(the origin, for example, is typically dual feasible in minimisation problems with nonnegative
coefficients; similar trivial cases are also well known).

Moreover, dual simplex is the algorithm of choice for resolving a linear programming problem when
after finding an optimal solution, you modify the feasible region. Turns out that this procedure
is in the core of the methods used to solve integer programming problems, as well as in the
Benders decomposition, both topics we will explore later on. The dual simplex method is also
more successful than its primal counterpart in combinatorial optimisation problems, which are
typically plagued with degeneracy. As we have seen, primal degeneracy simply means multiple
dual optima, which are far less problematic under an algorithmic standpoint.

Most professional implementations of the simplex method use by default the dual simplex version.
This has several computational reasons, in particular related to more effective Phase I and pricing
methods for the dual counterpart.
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5.5 Exercises

Exercise 5.1: Duality in the transportation problem

Recall the transportation problem from Chapter 1. Answer the following questions based on the
interpretation of the dual price.

We would like to plan the production and distribution of a certain product, taking into account
that the transportation cost is known (e.g., proportional to the distance travelled), the factories
(or source nodes) have a supply capacity limit, and the clients (or demand nodes) have known
demands. Table 5.2 presents the data related to the problem.

Clients

Factory NY Chicago Miami Capacity

Seattle 2.5 1.7 1.8 350

San Diego 3.5 1.8 1.4 600

Demands 325 300 275 -

Table 5.2: Problem data: unit transportation costs, demands and capacities

Additionally, we consider that the arcs (routes) from factories to clients have a maximum trans-
portation capacity, assumed to be 250 units for each arc. The problem formulation is then

min. z =
∑

i∈I

∑

j∈J

cijxij

s.t.:
∑

j∈J

xij ≤ Ci, ∀i ∈ I
∑

i∈I

xij ≥ Dj , ∀j ∈ J

xij ≤ Aij , ∀i ∈ I, j ∈ J
xij ≥ 0,∀i ∈ I, j ∈ J,

where Ci is the supply capacity of factory i, Dj is the demand of client j and Aij is the trans-
portation capacity of the arc between i and j.

(a) What price would the company be willing to pay for increasing the supply capacity of a given
factory?

(b) What price would the company be willing to pay for increasing the transportation capacity
of a given arc?

Exercise 5.2: Dual simplex

(a) Solve the problem below by using the dual simplex method. Report both the primal and
dual optimal solutions x and p associated with the optimal basis.

(b) Write the dual formulation of the problem and use strong duality to verify that x and p are
optimal.
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min. 2x1 + x3

s.t.: − 1/4x1 − 1/2x2 ≤ −3/4
8x1 + 12x2 ≤ 20

x1 + 1/2x2 − x3 ≤ −1/2
9x1 + 3x2 ≥ −6
x1, x2, x3 ≥ 0.

Exercise 5.3: Unboundedness and duality

Consider the standard-form linear programming problem:

(P ) : min. c⊤x

s.t.: Ax = b

x ≥ 0,

where A ∈ Rm×n and b ∈ Rm. Show that if P has a finite optimal solution, then the new problem
P obtained from P by replacing the right-hand side vector b with another one b̄ ∈ Rm cannot be
unbounded no matter what value the components of b̄ can take.

Exercise 5.4: Dual in matrix form

Consider the linear programming problem:

(P ) : min. c1
⊤
x1 + c2

⊤
x2 + c3

⊤
x3

s.t.

A1x1 +A2x2 +A3x3 ≤ b1 (y1)

A4x1 +A5x2 +A6x3 ≤ b2 (y2)

A7x1 +A8x2 +A9x3 ≤ b3 (y3)

x1 ≤ 0

x2 ≥ 0

x3 ∈ R|x3|,

where A1,...,9 are matrices, b1,...,3, c1,...,3 are column vectors, and y1,...,3 are the dual variables
associated to each constraint.

(a) Write the dual problem in matrix form.

(b) Compute the dual optimum for the case in which

A1 =

[
1 2

3 4

]
; A2 =

[
5 1

0 0

]
; A3 =

[
6

0

]
; A4 =

[
1 1

]
; A5 =

[
0 1

]
; A6 =

[
1
]
;

A7 =
[
0 2

]
; A8 =

[
0 0

]
; A9 =

[
3
]
; c1 =

[
3

9

]
; c2 =

[
4

2

]
; c3 =

[
1
]
; b1 =

[
5

10

]
;

b2 =
[
3
]
; b3 =

[
6
]
.
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Exercise 5.5: Primal-dual conversion and complementary slackness

Recall the transportation problem in Exercise 5.1.

(a) Construct the dual of the problem and solve both the original problem and its dual.

(b) Use complementary slackness to verify that the primal and dual solutions are optimal.
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Chapter 6

Linear Programming Duality -
Part II

The most direct application of duality in linear programming problems is the interpretation of dual
variable values as marginal values associated with constraints, with important economic implica-
tions.

We will also consider the notion of solution stability and restarting the simplex method, once new
variables or constraints are added to the problem post optimality. This will have an important
consequence for the development of efficient solution methods for integer programming problems,
which we will discuss in detail in later chapters.

6.1 Sensitivity analysis

We are interested in analysing aspects associated with the stability of the optimal solution x in
terms of how it changes with the inclusion of new decision variables and constraints or with changes
in the input data. Both cases are somewhat motivated by the realisation that problems typically
emerge from dynamic settings. Thus, one must assess how stable a given plan (represented by x)
is or how it can be adapted in the face of changes in the original problem setting. This kind of
analysis is generally referred to as sensitivity analysis in the context of linear programming.

First, we will consider the inclusion of new variables or new constraints after the optimal solution
x is obtained. This setting represents, for example, the inclusion of a new product or a new
production plant (referring to the context of resource allocation and transportation problems, as
discussed in Chapter 1) or the consideration of additional constraints imposing new (or previously
disregarded) requirements or conditions. The techniques we consider here will also be relevant
in the following chapters. We will then discuss specialised methods for large-scale problems and
solution techniques for integer programming problems, both topics that heavily rely on the idea of
iteratively incrementing linear programming problems with additional constraints (or variables).

The second group of cases relates to changes in the input data. When utilising linear programming
models to optimise systems performance, one must bear in mind that there is inherent uncertainty
associated with the input data. Be it due to measurement errors or a lack of complete knowledge
about the future, one must accept that the input data of these models will, by definition, embed
some measure of error. One way of taking this into account is to try to understand the consequences
to the optimality of x in case of eventual changes in the input data, represented by the matrix A,
and the vectors c and b. We will achieve this by studying the ranges within which variations in
these terms do not compromise the optimality of x.

95
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6.1.1 Adding a new variable

Assume that we have solved to optimality the problem P given as

P : min. c⊤x

s.t.: Ax = b

x ≥ 0.

Let us consider that a new variable xn+1 with associated column (that is, respective objective
function and constraint coefficients) (cn+1, An+1) is added to P . This leads to a new augmented
problem P ′ of the form

P ′ : min. c⊤x+ cn+1xn+1

s.t.: Ax+An+1xn+1 = b

x ≥ 0, xn+1 ≥ 0.

We need to determine if, after the inclusion of this new variable, the current basis B is still optimal.
Making the newly added variable nonbasic yields the basic feasible solution (BFS) x = (x, 0).
Moreover, we know that the optimality condition c⊤ − c⊤BB−1b ≥ 0 held before the inclusion of
the variable, so we know that all the other reduced costs associated with the nonbasic variables
j ∈ IN were nonnegative.

Therefore, the only check that needs to be done is whether the reduced cost associated with xn+1

also satisfies the optimality condition, i.e., if

cn+1 = cn+1 − c⊤BB−1An+1 ≥ 0.

If the optimality condition is satisfied, the new variable does not change the optimal basis, and the
solution x = (x, 0) is optimal. Otherwise, one must perform a new simplex iteration, using B as a
starting BFS. Notice that in this case, primal feasibility is trivially satisfied, while dual feasibility
is not observed (that is, cn+1 < 0). Therefore, primal simplex can be employed, warm started by
B. This is often a far more efficient strategy than resolving P ′ from scratch.

Let us consider a numerical example. Consider the problem

min. − 5x1 − x2 + 12x3

s.t.: 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, . . . , x4 ≥ 0.

The tableau associated with its optimal solution is given by

x1 x2 x3 x4 RHS

z 0 0 2 7 12

x1 1 0 -3 2 2

x2 0 1 5 -3 2

Suppose we include a variable x5, for which c5 = −1 and A5 = (1, 1). The modified problem then
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becomes

min. − 5x1 − x2 + 12x3 − x5
s.t.: 3x1 + 2x2 + x3 + x5 = 10

5x1 + 3x2 + x4 + x5 = 16

x1, . . . , x5 ≥ 0.

We have that the reduced cost of the new variable is given by c5 = c5 − c⊤BB
−1A5 = −4 and

B−1A5 = (−1, 2). The tableau for the optimal basis B considering the new column associated
with x5 is thus

x1 x2 x3 x4 x5 RHS

z 0 0 2 7 -4 12

x1 1 0 -3 2 -1 2

x2 0 1 5 -3 2 2

Notice that this tableau now shows a primal feasible solution that is not optimal and can be further
iterated using primal simplex.

6.1.2 Adding a new constraint

We now focus on the inclusion of additional constraints. Let us assume that a general constraint of
the form am+1

⊤x ≥ bm+1 is added to P after it has been solved. We assume it to be an inequality,
but notice that P was originally in the standard form.

The first thing to observe is that, if the optimal solution x to P satisfy am+1
⊤x ≥ bm+1, then

nothing changes. Otherwise, we need to rewrite the new constraint accordingly by including a
slack variable, obtaining

am+1
⊤x− xn+1 = bm+1.

Notice that doing so changes the matrix A of the original problem P , which becomes

A =

[
A 0

a⊤m+1 −1

]
.

We can reuse the optimal basis B to form a new basis B for the problem. This will have the form

B =

[
B 0

a⊤ −1

]
,

where a are the respective components of am+1 associated with the columns from A that formed

B. Now, since we have that B
−1
B = I, we must have that

B
−1

=

[
B−1 0

a⊤B−1 −1

]
.

Notice however, that the basic solution (x, am+1
⊤x− bm+1) associated with B is not feasible, since

we assumed that x did not satisfy the newly added constraint, i.e., am+1
⊤x < bm+1.
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The reduced costs considering the new basis B then become

[c⊤ 0]− [c⊤B 0]

[
B−1 0

a⊤B−1 −1

] [
A 0

a⊤m+1 −1

]
= [c⊤ − c⊤BB−1A 0].

Notice that the new slack variable has a null component as a reduced cost, meaning that it does
not violate dual feasibility conditions. Thus, after adding a constraint that makes x infeasible, we
still have a dual feasible solution that can be immediately used by the dual simplex method, again
allowing for warm starting the solution of the new problem.

To build an initial solution in terms of the tableau representation of the simplex method, we must
simply add an extra new row, which leads to a new tableau with the following structure

B
−1
A =

[
B−1A 0

a⊤B−1A− a⊤m+1 1

]
.

Let us consider a numerical example again. Consider the same problem as the previous example,
but that we instead include the additional constraint x1+x2 ≥ 5, which is violated by the optimal
solution (2, 2, 0, 0). In this case, we have that am+1 = (1, 1, 0, 0) and a⊤B−1A−a⊤m+1 = [0, 0, 2,−1].
This modified problem then looks like

min. − 5x1 − x2 + 12x3

s.t.: 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

− x1 − x2 + x5 = −5
x1, . . . , x5 ≥ 0

with associated tableau

x1 x2 x3 x4 x5 RHS

z 0 0 2 7 0 12

x1 1 0 -3 2 0 2

x2 0 1 5 -3 0 2

x5 0 0 2 -1 1 -1

Notice that this tableau indicates that we have a dual feasible solution that is not primal feasible
and thus suitable to be solved using dual simplex.

A final point to note is that these operations are related to each other in terms of equivalent
primal-dual formulations. That is, consider dual of P , which is given by

D : max. p⊤b

s.t.: p⊤A ≤ c.
Then, adding a constraint of the form p⊤An+1 ≤ cn+1 is equivalent to adding a variable to P ,
exactly as discussed in Section 6.1.1.

6.1.3 Changing input data

We now consider how changes in the input data can influence the optimality of a given basis.
Specifically, we consider how to predict whether changes in the vector of independent terms b and
objective coefficients c will affect the optimality of the problem. Notice that variations in the
coefficient matrix A are left aside.
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Optimal dual variables as marginal costs

As before, assume that we have solved P to optimality. As we have seen in Chapter 4, the optimal
solution x with associated basis B satisfies the following optimality conditions: it is a BFS and,
therefore (i) B−1b ≥ 0; and (ii) all reduced costs are nonnegative, that is c⊤ − c⊤BB−1b ≥ 0.

Now, assume that we cause a marginal perturbation on the vector b, represented by a vector d.
That is, assume that we have B−1(b+ d) > 0, assuming that nondegeneracy is retained.

Recall that the optimality condition c = c⊤ − c⊤BB−1A ≥ 0 is not influenced by such a marginal
perturbation. That is, for a small change d, the optimal basis (i.e., the selection of basic variables)
is not disturbed. On the other hand, the optimal value of the basic variables, and consequently,
the optimal value, becomes

c⊤BB
−1(b+ d) = p⊤(b+ d).

Notice that p⊤ = c⊤BB
−1 is optimal for the (respective) dual problem. Thus, a change d causes a

change of p⊤d in the optimal value, meaning that the components pi represent amarginal value/cost
associated with the independent term bi, for i ∈ I.
This has important implications in practice, as it allows for pricing the values of the resources
associated with constraints. For example, suppose the dual value (or price) pi is associated with a
resource whose requirement is given by bi. In that case, any opportunity to remove units of bi for
less than pi should be seized since it costs pi to satisfy any additional unit in the requirement bi.
A similar interpretation can be made in the context of less-or-equal-than constraints, in which pi
would indicate benefits (or losses, if pi > 0) in increasing the availability of bi.

For a numerical example, let us consider our paint factory problem once again.

The following tableau represents the optimal solution

x1 x2 x3 x4 x5 x6 RHS

z 0 0 3/4 1/2 0 0 21

x1 1 0 1/4 -1/2 0 0 3

x2 0 1 -1/8 3/4 0 0 3/2

x5 0 0 3/8 -5/4 1 0 5/2

x6 0 0 1/8 -3/4 0 1 1/2

where x3 and x4 were the slack variables associated with raw material M1 and M2, respectively.
In this case, we have that

B−1 =




1/4 −1/2 0 0

−1/8 3/4 0 0

3/8 −5/4 1 0

1/8 −3/4 0 1


 and p = c⊤BB

−1 =




−5
−4
0

0




⊤ 


1/4 −1/2 0 0

−1/8 3/4 0 0

3/8 −5/4 1 0

1/8 −3/4 0 1


 =




−3/4
−1/2
0

0




Notice that these are values of the entries in the z-row below the slack variables x3, . . . , x6, except
the minus sign. This is because the z-rows contain the entries for c − p⊤B−1 and for all slack
variables we have that cj = 0, for j = 3, . . . , 6. Also, recall that the paint factory problem is a
maximisation problem, so p represents the decrease in the objective function value. In this, we
see that removing one unit of M1 would decrease the objective function by 3/4 and removing one
unit of M2 would similarly decrease the objective value by 1/2. Analogous, increasing M1 or M2
availability by one unit would increase the objective function value by 3/4 and 1/2, respectively.
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Changes in the vector b

Suppose that some component bi changes and becomes bi + δ, with δ ∈ R. We are interested in
the range for δ within which the basis B remains optimal.

First, we must notice that optimality conditions c = c⊤− c⊤BB−1A ≥ 0 are not directly affected by
variation in the vector b. This means that the choice of variable indices j ∈ IB to form the basis
B will, in principle, be stable unless the change in bi is such that B is rendered infeasible. Thus,
we need to study the conditions in which feasibility is retained, or, more specifically, if (recall the
ei is the vector of zeros except for the ith component being 1)

B−1(b+ δei) ≥ 0.

Let g = (g1i, . . . , gmi) be the ith column of B−1. Thus

B−1(b+ δei) ≥ 0⇒ xB + δg ≥ 0⇒ xB(j) + δgji ≥ 0, j = 1, . . . ,m.

Notice that this is equivalent to having δ within the range

max
j:gji>0

(
−xB(j)

gji

)
≤ δ ≤ min

j:gji<0

(
−xB(j)

gji

)
.

In other words, changing bi will incur changes in the value of the basic variables, and thus, we
must determine the range within which all basic variables remain nonnegative (i.e., feasible).

Let us consider a numerical example. Once again, consider the problem from Section 6.1.1. The
optimal tableau was given by

x1 x2 x3 x4 RHS

z 0 0 2 7 12

x1 1 0 -3 2 2

x2 0 1 5 -3 2

Suppose that b1 will change by δ in the constraint 3x1 + 2x2 + x3 = 10. Notice that the first
column of B−1 can be directly extracted from the optimal tableau and is given by (−3, 5). The
optimal basis will remain feasible if 2− 3δ ≥ 0 and 2 + 5δ ≥ 0, and thus −2/5 ≤ δ ≤ 2/3.

Notice that this means that we can calculate the change in the objective function value as a function
of δ ∈ [−2/5, 2/3]. Within this range, the optimal cost changes as

c⊤B(b+ δei) = p⊤b+ δpi,

where p⊤ = c⊤BB
−1 is the optimal dual solution. In case the variation falls outside that range, this

means that some of the basic variables will become negative. However, since the dual feasibility
conditions are not affected by changes in bi, one can still reutilise the basis B using dual simplex
to find a new optimal solution.

Changes in the vector c

We now consider the case where variations are expected in the objective function coefficients.
Suppose that some component cj becomes cj + δ. In this case, optimality conditions become a
concern. Two scenarios can occur. First, it might be that the changing coefficient is associated
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with a variable j ∈ J that happens to be nonbasic (j ∈ IN ) in the optimal solution. In this case,
we have that optimality will be retained as long as the nonbasic variable remains “not attractive”,
i.e., the reduced cost associated with j remains nonnegative. More precisely put, the basis B will
remain optimal if

(cj + δ)− cBB−1Aj ≥ 0⇒ δ ≥ −cj .

The second scenario concerns changes in variables that are basic in the optimal solution, i.e.,
j ∈ IB . In that case, the optimality conditions are directly affected, meaning that we have to
analyse the range of variation for δ within which the optimality conditions are maintained, i.e., the
reduced costs remain nonnegative.

Let cj is the coefficient of the lth basic variable, that is j = B(l). In this case, cB becomes cB+δel,
meaning that all optimality conditions are simultaneously affected. Thus, we have to define a range
for δ in which the condition

(cB + δel)
⊤B−1Ai ≤ ci, ∀i ̸= j

holds. Notice that we do not need to consider j since xj is a basic variable, and thus, its reduced
costs are assumed to remain zero.

Considering the tableau representation, we can use the lth row and examine the conditions for
which δqli ≤ ci,∀i ̸= j, where qli is the l

th entry of B−1Ai.

Let us once again consider the previous example, with optimal tableau

x1 x2 x3 x4 RHS

z 0 0 2 7 12

x1 1 0 -3 2 2

x2 0 1 5 -3 2

First, let us consider variations in the objective function coefficients of variables x3 and x4. Since
both variables are nonbasic in the optimal basis, the allowed variation for them is given by

δ3 ≥ −c3 = −2 and δ4 ≥ −c4 = −7.

Two points to notice. First, notice that both intervals are one-sided. This means that one should
only be concerned with variations that decrease the reduced cost value since increases in their
value can never cause any changes in the optimality conditions. Second, notice that the allowed
variation is trivially the negative value of the reduced cost. For variations that turn the reduced
costs negative, the current basis can be utilised as a starting point for the primal simplex.

Now, let us consider a variation in the basic variable x1. Notice that in this case we have to
analyse the impact in all reduced costs, with exception of x1 itself. Using the tableau, we have
that ql = [1, 0,−3, 2] and thus

δ1q12 ≤ c2 ⇒ 0 ≤ 0

δ1q13 ≤ c3 ⇒ δ1 ≥ −2/3
δ1q14 ≤ c4 ⇒ δ1 ≤ 7/2,

implying that −2/3 ≤ δ1 ≤ 7/2. Like before, for a change outside this range, primal simplex can
be readily employed.



102 Chapter 6. Linear Programming Duality - Part II

6.2 Cones and extreme rays

We now change the course of our discussion towards some results that will be useful in identifying
two non-ordinary situations when employing the simplex method: unboundedness and infeasibility.
Typically, these are consequences of issues related to the data and/or with modelling assumptions
and are challenging in that they prevent us from obtaining a solution from the model. As we will
see, infeasibility and unboundedness can be identified using duality and are all connected by the
notion of cones, which we formally give in Definition 6.1.

Definition 6.1 (Cones). A set C ⊂ Rn is a cone if λx ∈ C for all λ ≥ 0 and all x ∈ C.

A cone C can be understood as a set formed by the nonnegative scaling of a collection of vectors
x ∈ C. Notice that it implies that 0 ∈ C. Often, it will be the case that 0 ∈ C is an extreme point
of C and in that case, we say that C is pointed. As one might suspect, in the context of linear
programming, we will be mostly interested in a specific type of cone, those known are polyhedral
cones. Polyhedral cones are sets of the form

P = {x ∈ Rn : Ax ≥ 0} .

Figure 6.1 illustrates a polyhedral cone in R3 formed by the intersection of three half-spaces.

x1

x2

x3

a1

a2

Figure 6.1: A polyhedral cone in R3 formed by 3 half-space

Some interesting properties can be immediately concluded regarding polyhedral cones. First, they
are convex sets, since they are polyhedral sets (cf. Theorem 2.8). Also, the origin is an extreme
point, and thus, polyhedral cones are always pointed. Furthermore, just like general polyhedral
sets, a cone C ∈ Rn will always be associated with a collection of n linearly independent vectors.
Corollary 6.2 summarises these points. Notice we pose it as a corollary because these are immediate
consequences of Theorem 3.5.

Corollary 6.2. Let C ⊂ Rn be a polyhedral cone defined by constraints
{
a⊤i x ≥ 0

}
i=1,...,m

. Then

the following are equivalent

1. 0 is an extreme point of C;

2. C does not contain a line;

3. There exists n vectors in a1, . . . , am that are LI.

Proof. The proof of Theorem 3.5 verbatim, with P = C.
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Notice that 0 ∈ C is the unique extreme point of the polyhedral cone C. To see that, let 0 ̸= x ∈ C,
x1 = (1/2)x and x2 = (3/2)x. Note that x1, x2 ∈ C, and x ̸= x1 ̸= x2. Setting λ1 = λ2 = 1/2, we
have that λ1x1 + λ2x2 = x and thus, x is not an extreme point (cf. Definition 2.11).

6.2.1 Recession cones and extreme rays

We now focus on a specific type of cone, called recession cones. In the context of linear optimisation,
recession cones are useful for identifying directions of unboundedness. Let us first formally define
the concept.

Definition 6.3 (Recession cone). Consider the polyhedral set P = {x ∈ Rn : Ax ≥ b}. The reces-
sion cone at x ∈ P , denoted recc(P ), is defined as

recc(P ) = {d ∈ Rn : A(x+ λd) ≥ b, λ ≥ 0} or {d ∈ Rn : Ad ≥ 0} .

Notice that the definition states that a recession cone comprises all directions d along which one
can move from x ∈ P without ever leaving P . However, notice that the definition does not
depend on x, meaning that the recession cone is unique for the polyhedral set P , regardless of its
“origin”. Furthermore, notice that Definition 6.3 implies that recession cones of polyhedral sets
are polyhedral cones.

We say that any directions d ∈ recc(P ) is a ray. Thus, bounded polyhedra can be alternatively
defined as polyhedral sets that do not contain rays.

Figure 6.2: Representation of the recession cone of a polyhedral set

Figure 6.2 illustrates the concept of recession cones. Notice that the cone is purposely placed in
several places to illustrate the independence of the point x ∈ P .
Finally, the recession cone for a standard form polyhedral set P = {x ∈ Rn : Ax = b, x ≥ 0} is
given by

recc(P ) = {d ∈ Rn : Ad = 0, d ≥ 0} .

6.2.2 Unbounded problems

To identify unboundedness in linear programming problems, we must check for the existence of
extreme rays. Extreme rays are analogous to extreme points, but defined with a “loose” degree of
freedom. Definition 6.4 provides a technical definition of extreme rays.

Definition 6.4 (Extreme ray). Let C ⊂ Rn be a nonempty polyhedral cone. A nonzero x ∈ C is
an extreme ray if there are n− 1 linearly independent active constraints at x.
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Notice that we are interested in extreme rays of the recession cone recc(P ) of the polyhedral set
P . However, it is typical to say that they are extreme rays of P . Figure 6.3 illustrates the concept
of extreme rays in polyhedral cones.

x1

x2

x3

a1

a2

d1
d2

d3

Figure 6.3: A polyhedral cone formed by the intersection of three half-spaces (the normal vector
a3 is perpendicular to the plane of the picture and cannot be seen). Directions d1, d2, and d3
represent extreme rays.

Notice that, just like extreme points, the number of extreme rays is finite by definition. In fact, we
say that two extreme rays are equivalent if they are positive multiples corresponding to the same
n− 1 linearly independent active constraints.

The existence of extreme rays can be used to verify unboundedness in linear programming problems.
The mere existence of extreme rays does not suffice since unboundedness is a consequence of the
extreme ray being a direction of improvement for the objective function. To demonstrate this, let us
first describe unboundedness in polyhedral cones, which we can then use to show the unboundedness
in polyhedral sets.

Theorem 6.5 (Unboundedness in polyhedral cones). Let P : min.
{
c⊤x : x ∈ C

}
, with C ={

a⊤i x ≥ 0, i = 1, . . . ,m
}
. The optimal value is equal to −∞ if and only if some extreme ray d ∈ C

satisfies c⊤d < 0.

Proof. If c⊤d < 0, then P is unbounded, since c⊤x→ −∞ along d. Also, there exists some x ∈ C
for which c⊤x < 0 can be scaled to -1.

Let P =
{
x ∈ Rn : a⊤i x ≥ 0, i = 1, . . . ,m, c⊤x = −1

}
. Since 0 ∈ C, P has at least one extreme

point {ai}mi=1 and thus span Rn (cf. Theorem 3.5). Let d be one of those. As we have n linearly-

independent active constraints at d, n − 1 of the constraints
{
a⊤i x ≥ 0

}m
i=1

must be active (plus

c⊤x = −1), and thus d is an extreme ray.

We can now expand the result to general polyhedral sets.

Theorem 6.6 (Unboundedness in polyhedral sets). Let P : min.
{
c⊤x : x ∈ X

}
with X =

{x ∈ Rn : Ax ≥ b} and assume that the feasible set has at least one extreme point. Then, the
optimal value is −∞ if and only if c⊤d < 0.

Proof. As before, if c⊤d < 0, then P is unbounded, since c⊤x → −∞ along d. Now, let
D : max.

{
p⊤b : p⊤A = c⊤, p ≥ 0

}
be the dual of P . Recall that, if P is unbounded, then D

is infeasible, and so must be D0 : max.
{
p⊤0 : p⊤A = c⊤, p ≥ 0

}
. This implies that the primal

P 0 : min.
{
c⊤x : Ax ≥ 0

}
is unbounded (as 0 is feasible).
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The existence of at least one extreme point for P implies that the rows {ai}i=1,...,m of A span
Rn and recc(X)={x ∈ Rn : Ax ≥ 0} is pointed. Thus, by Theorem 6.5 there exists d such that
c⊤d < 0.

We now focus on how this can be utilised in the context of the simplex method. It turns out that
once unboundedness is identified in the simplex method, one can extract the extreme ray causing
the said unboundedness. In fact, most professional-grade solvers are capable of returning extreme
(or unbounded) rays, which is helpful in the process of understanding the causes for unboundedness
in the model. We will also see in the next chapter that these extreme rays are also used in the
context of specialised solution methods.

To see that is possible, let P : min.
{
c⊤x : x ∈ X

}
with X = {x ∈ Rn : Ax = b, x ≥ 0} and assume

that, for a given basis B, we conclude that the optimal value is −∞, that is, the problem is
unbounded. In the context of the simplex method, this implies that we found a nonbasic variable
xj for which the reduced cost cj < 0 and the jth column of B−1Aj has no positive coefficient.
Nevertheless, we can still form the feasible direction d = [dB dN ] as before, with

dB = −B−1Aj and dN =

{
dj = 1

di = 0,∀i ∈ IN \ {j} .

This direction d is precisely an extreme ray for P . To see that, first, notice that Ad = 0 and
d ≥ 0, thus d ∈ recc(X). Moreover, there are n − 1 active constraints at d: m in Ad = 0 and
n −m − 1 in di = 0 for i ∈ IN \ {j}. The last thing to notice is that cj = c⊤d < 0, which shows
the unboundedness in the direction d.

6.2.3 Farkas’ lemma

We now focus on the idea of generating certificates of infeasibility for linear programming problems.
That is, we show that if a problem P is infeasible, then there is a structure that can be identified
to certify the infeasibility. To see how this works, consider the two polyhedral sets

X = {x ∈ Rn : Ax = b, x ≥ 0} and

Y =
{
p ∈ Rm : p⊤Ax ≥ 0, p⊤b < 0

}
.

If there exists any p ∈ Y , then there is no x ∈ X for which p⊤Ax = p⊤b, (and in turn Ax = b),
holds. Thus, X must be empty. Notice that this can be used to infer that a problem P with a
feasibility set represented by X prior to solving P itself, by means of solving the feasibility problem
of finding a vector p ∈ Y .

We now pose this relationship more formally via a result generally known as the Farkas’ lemma.

Theorem 6.7 (Farkas’ lemma). Let A be a m × n matrix and b ∈ Rm. Then, exactly one of the
following statements hold

(1) There exists some x ≥ 0 such that Ax = b;

(2) there exists some vector p such that p⊤A ≥ 0, p⊤b < 0.

Proof. Assume that (1) is satisfied. If p⊤A ≥ 0, then p⊤b = p⊤Ax ≥ 0, which violates (2).

Now, consider the primal-dual pair P : min.
{
0⊤x : Ax = b, x ≥ 0

}
andD : max.

{
p⊤b : p⊤A ≥ 0

}
.

Being P infeasible, D must be unbounded (instead of infeasible) since p = 0 is feasible for D. Thus,
p⊤b < 0 for some p ̸= 0.
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The Farkas’ lemma has a nice geometrical interpretation that represents the mutually exclusive
relationship between the two sets. For that, notice that we can think of b as being a conic com-
bination of the columns Aj of A, for some x ≥ 0. If that cannot be the case, then there exists a
hyperplane that separates b and the cone formed by the columns of A, C = {y ∈ Rm : y = Ax}.
This is illustrated in Figure 6.4. Notice that the separation caused by such a hyperplane with
normal vector p implies that p⊤Ax ≥ 0 and p⊤b < 0, i.e., Ax and b are on the opposite sides of
the hyperplane.

A1 A2 A3

b

p

Figure 6.4: Since b ̸∈ X, p⊤x = 0 separates them
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6.3 Exercises

Exercise 6.1: Sensitivity analysis in the RHS

Consider the following linear programming problem and its optimal tableau below:

min. − 2x1 − x2 + x3

s.t.: x1 + 2x2 + x3 ≤ 8

− x1 + x2 − 2x3 ≤ 4

3x1 + x2 ≤ 10

x1, x2, x3 ≥ 0.

x1 x2 x3 x4 x5 x6 RHS

z 0 0 1.2 0.2 0 0.6 -7.6

x1 1 0 -0.2 -0.2 0 0.4 2.4

x2 0 1 0.6 0.6 0 -0.2 2.8

x5 0 0 -2.8 -0.8 1 0.6 3.6

(a) If you were to choose between increasing in 1 unit the right-hand side of any constraints,
which one would you choose, and why? What is the effect of the increase on the optimal
cost?

(b) Perform a sensitivity analysis on the model to discover what is the range of alteration in
the RHS in which the same effect calculated in item (a) can be expected. HINT : JuMP
(from version 0.21.6) includes the function “lp sensitivity report()” that you can use to help
performing the analysis.

Exercise 6.2: Extreme points and extreme rays

(a) Let P = {(x1, x2) : x1−x2 = 0, x1+x2 = 0}. What are the extreme points and the extreme
rays of P?

(b) Let P = {(x1, x2) : 4x1 + 2x2 ≥ 0, 2x1 + x2 ≤ 1}. What are the extreme points and the
extreme rays of P?

(c) For the polyhedron of part (b), is it possible to express each one of its elements as a convex
combination of its extreme points plus a nonnegative linear combination of its extreme rays?
Is this compatible with the Resolution Theorem?

Exercise 6.3: From Farkas’ lemma to duality

Use the Farkas’ lemma to prove the duality theorem for a linear programming problem involving
constraints of the form a′ix = bi, a

′
ix ≥ bi, and nonegativity constraints for some of the variables

xj . Hint : Start by deriving the form of the set of feasible directions at an optimal solution.



108 Chapter 6. Linear Programming Duality - Part II

Exercise 6.4: Adding a constraint

Consider the linear programming problem below with optimal basis [x1, x2, x5, x6] and dual vari-
ables p1, . . . , p4.

max. 2x1 + x2

s.t.: 2x1 + 2x2 ≤ 9 (p1)

2x1 − x2 ≤ 3 (p2)

x1 ≤ 3 (p3)

x2 ≤ 4 (p4)

x1, x2 ≥ 0.

(a) Find the primal and dual optimal solutions. HINT : You can use complementary slackness,
once having the primal optimum, to find the dual optimal solution.

(b) Suppose we add a new constraint 6x1 − x2 ≤ 6, classify the primal and dual former optimal
points stating if they: (i) remain optimal; (ii) remain feasible but not optimal; or (iii) become
infeasible.

(c) Consider the new problem from item (b) and find the new dual optimal point through one
dual simplex iteration. After that, find the primal optimum.



Chapter 7

Barrier Method for Linear
Programming

7.1 Barrier methods

In this chapter, we look into barrier methods as an alternative for solving linear programming
problems. Barrier methods stem from early developments of methods for solving constrained
nonlinear programming problems which were mainly characterised by the strict satisfaction of
the constraints throughout the method. Because of this feature, these methods became generally
known as interior point methods. This is however not the case anymore, and most implementations
of interior point methods benefit from features that allow the search to “leave the interior” of the
feasible region. Hence, it became common to refer to these methods with the more general name
of barrier methods.

A subclass of barrier methods called primal-dual methods distinguishes itself as an efficient method,
with practical performance surpassing in many cases that of the simplex method. Currently, most
professional-grade solvers have built-in implementations of barrier methods.

In essence, barrier methods are the method of choice of many nonlinear local solvers, which are
targeted towards nonlinear optimisation problems. The term local refers to the fact that solutions
found can only be guaranteed to be locally optimal. Of course, for convex optimisation problems,
this is not an issue, as a local solution is globally optimal.

In general, the simplex methods often perform better in small and medium problems, whilst barrier
methods typically perform better on large-scale problems. This is largely because, as we will see,
the main operation in a barrier method is solving (large) linear systems of equations, which can be
done rather efficiently and in ways that exploit the structure of the problem (e.g., matrix sparsity
can be exploited by factorisation techniques) to reap computational performance improvements.

7.2 Newton’s method with equality constraints

In essence, barrier methods employ a variant of Newton’s method to solve the optimality conditions
of optimisation problems. In the context of linear programming problems, this is equivalent to
finding solutions that are both primal and dual feasible1.

We consider a version of Newton’s method called the Newton-Raphson (NR) method, which was
originally conceived for finding roots of vector functions. Let f : Rn → Rn, with fi : Rn → R
differentiable for i = 1, . . . , n.

1Recall that the satisfaction of complementarity conditions in the linear case is a consequence of primal and dual
feasibility, cf. Theorem 5.4.
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We wish to find a solution x∗ that is a root for f , i.e., f(x∗) = 0. For that, we must solve the
system of equations given by

f(x) =



f1(x)

...

fn(x)


 =



0
...

0


 .

The NR method starts from an initial guess xk for x∗ and iterates by finding the root for a linear
(i.e., first-order Taylor) approximation of f at xk. Under suitable conditions, including having a
starting point x0 that is within a neighbourhood of the root of f , the sequence

{
xk
}
k→∞ converges

to x∗.

Let us clearly state how the method iterates. At a given xk, the first-order approximation of f(x)
is given by

f(xk + d) = f(xk) +∇f(xk)⊤d,
where ∇f(xk) is the Jacobian of f(x), which is defined as

∇f(xk) =



∇f1(xk)⊤

...

∇fn(xk)⊤


 .

The algorithm proceeds by finding the step to be taken from xk to reach the root of the first-order
approximation of f at xk. This means that we want to obtain a Newton direction d such that it
solves the first-order approximation of f(xk + d) = 0. Thus, we must solve

f(xk) +∇f(xk)⊤d = 0⇒ d = −∇f(xk)−1f(xk).

Consider the following numerical example. Suppose we would like to find the root of f with
x0 = (1, 0, 1), where f is given by

f(x) =



f1(x)

f2(x)

f3(x)


 =



x21 + x22 + x23 − 3

x21 + x22 − x3 − 1

x1 + x2 + x3 − 3




The Jacobian of f is given by

∇f(x) =



2x1 2x2 2x3
2x1 2x2 −1
1 1 1


 .

The algorithm starts by calculating d0, which is given by

d0 = −[∇f(x0)]−1f(x0) = −



2 0 2

2 0 −1
1 1 1



−1 

−1
−1
−1


 =



1/2

1/2

0


 .

Thus, the first point is
x1 = x0 + d0 =

[
3/2 1/2 1

]
.

To infer that the method has converged, we can either check whether f(xk) ≈ 0 or whether
||xk+1 − xk||2 = ||dk||2 ≈ 0. As ||x1 − x0||2 = ||d0||2 ≈ 0.7, and f(x1) = [1/2, 1/2, 0], the point
x1 is not a root, and the method carries on until we find that ||dk|| < ϵ. If we adopt a numerical
tolerance of ϵ = 0.01, meaning that any number below this threshold is deemed acceptably close
to zero, then x∗ = (1, 1, 1) is reached after approximately 20 iterations.
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7.3 Interior point methods linear programming problems

We start by focusing on the primal-dual interior point method, as originally proposed. Then, we
will focus on the modifications that make it capable of iterating through some not necessarily
interior solutions in a strict sense.

We start by considering our linear programming problem in standard form

(P ) : min. c⊤x

s.t.: Ax = b,

x ≥ 0,

and its associated dual, which is stated as

(D) : max. b⊤p

s.t.: A⊤p+ u = c,

u ≥ 0.

Notice that the dual is also posed in a form where the inequalities (originally A⊤p ≤ c) are
converted to equalities requiring the additional variable u. An alternative way to think about u is
as if it were the dual variable associated with the nonnegativity constraints x ≥ 0.

Recall that the optimality conditions for problem P can be expressed as

Ax = b, x ≥ 0, (7.1)

A⊤p+ u = c, u ≥ 0, (7.2)

u⊤x = 0. (7.3)

The first two conditions are primal (7.1) and dual (7.2) feasibility conditions, while (7.3) is an
alternative way of stating complementarity conditions on the nonnegativity constraints x ≥ 0.

One initial idea could be simply, from a purely methodological standpoint, to employ NR to solve
the above system of equations. The caveat, however, is that one must observe and retain the non-
negativity conditions x > 0 and u > 0, which are an important complicating factor in this setting.
Indeed, departing from a feasible solution (x, p, u), one could employ NR to find a solution for
(7.1)-(7.3) while controlling the steps taken in each Newton direction such that the nonnegativity
conditions x > 0 and u > 0 are retained, in a similar fashion to how it is done in the simplex
method. However, it turns out that Newton directions obtained from successive iterations of (7.1)-
(7.3) typically require the steps to be considerably small so that the nonnegativity conditions are
retained, which renders the algorithm less useful from a practical standpoint.

This is precisely when the notion of an interior solution plays a role. An interior point is defined
as a point that satisfies primal and dual feasibility conditions strictly, that is Ax = b with x > 0,
and A⊤p+u = c with u > 0, implying that the complementarity conditions (7.3) are violated. This
notion of interior points is useful in that it allows for the definition of less “aggressive” Newton
directions, which aim towards directions that reduce the amount of violation in the complemen-
tarity conditions. Thus, we can alternatively consider the system with relaxed complementarity
conditions in which we define the scalar µ > 0 and restate the optimality conditions as

Ax = b, x ≥ 0,

A⊤p+ u = c, u ≥ 0,

ujxj = µ, ∀j ∈ J.



112 Chapter 7. Barrier Method for Linear Programming

Then, we use these relaxed optimality conditions to obtain Newton directions, while, simultane-
ously, gradually making µ → 0. By doing so, one can obtain not only directions that can be
explored with larger step sizes, thus making more progress per iteration, but also yield methods
with better numerical properties.

To see how that can be made operational, let us first define some helpful notation. Let X ∈ Rn×n

and U ∈ Rn×n be defined as

X = diag(x) =




. . .

xi
. . .


 and U = diag(u) =




. . .

ui
. . .




and let e = [1, . . . , 1]⊤ be a vector of ones of suitable dimension. We can rewrite the optimality
conditions (7.1)- (7.3) in matrix form as

Ax = b, x > 0,

A⊤p+ u = c, u > 0,

XUe = 0,

and, analogously, state their relaxed version (i.e., with relaxed complementarity conditions) as

Ax = b, x > 0, (7.4)

A⊤p+ u = c, u > 0, (7.5)

XUe = µe. (7.6)

We start from a feasible solution (xk, pk, uk). We can then employ NR to solve the system (7.4)-
(7.6) for a given value of µ. That amounts to finding the Newton direction d that solves f(xk) +
∇f(xk)⊤d = 0, in which

f(xk) =




Axk − b
A⊤pk + uk − c
XkUke− µe


 , ∇f(xk) =



A 0 0

0 A⊤ I

Uk 0 Xk


 and d = (dkx, d

k
p, d

k
u) =



x− xk
p− pk
u− uk


 .

Once the direction dk = (dkx, d
k
p, d

k
u) is obtained, we must calculate step sizes that can be taken in

the direction dk that also retain feasibility conditions, meaning that they do not violate x > 0 and
u > 0 at the new point. One simple idea is to follow the same procedure as the simplex method.
That is, let θkp and θkd be the iteration k step sizes for x and (p, u), respectively. Then they can be
set as

θkp = min
i:dk

xi
<0
− x

k
i

dkxi

and θkd = min
i:dk

ui
<0
− u

k
i

dkui

,

where dkxi
and dkui

are the i-th component of the vectors dkx and dku, respectively, and i = 1, . . . , n.
In practice, there are alternative, and arguably more efficient, ways to set step sizes, but they all
are such that their maximum sizes are θp and θd as above and always strictly smaller than one
(notice that our constraints are such that x and u are strictly positive).

Once we calculated appropriate step sizes, we can then make

(xk+1, pk+1, uk+1) = (xk + θkpd
k
x, p

k + θkdd
k
p, u

k + θkdd
k
u).
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Then, we proceed by updating µ as µ = βµ, with β ∈ (0, 1) and repeat the same procedure until
convergence, i.e., until µ is sufficiently small.

Before discussing in more detail the practicalities of the method, let us take an alternative per-
spective on showing how the notion of interior plays a role in the design of the algorithm, which
requires us to consider the notion of barrier functions. This will also serve as a justification for the
name “barrier methods”.

7.4 Barrier methods for linear programming problems

Barrier methods are a class of optimisation methods designed to handle inequality-constrained
problems of the form

(P ) : min. f(x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

Ax = b.

These methods use the notion of barrier functions to remove inequality constraints and have
them represented implicitly as an objective function term. This allows for the use of NR as the
underpinning numerical method of a solution algorithm.

To see how the method works, we can think of a barrier function as a surrogate for a feasibility
indicator function I that reacts to infeasibility in gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}2. That is, I : R→ R
is such that

I(y) =

{
0, if y ≤ 0

∞, if y > 0.

With that definition for I at hand, we can then reformulate our problem as

min. f(x) +

m∑

i=1

I(gi(x))

s.t.: Ax = b.

The issue however is that I is not numerically favourable, due to its nature of “shooting to infinity”
(including the discontinuity it creates) whenever a solution x is infeasible to the original problem.
To circumvent that, we can use barrier functions instead, which are chosen to mimic the behaviour
of I, whilst retaining more favourable numerical properties. The most widespread choice for barrier
functions is the logarithmic barrier, which is given by

Bµ(y) = −µ ln(−y)
where µ > 0 sets the accuracy of the barrier term Bµ(y). Figure 7.1 illustrates the influence of µ
in the shape of the barrier function for the unidimensional case. Notice how, as µ decreases, the
logarithmic barrier more closely resembles the indicator function I.

Using Bµ as the barrier function, the barrier problem Pµ can be formulated as

(Pµ) : min. f(x)− µ
m∑

i=1

ln(−gi(x))

s.t.: Ax = b.

2The technical name of this function is the characteristic function, which is arguably a less informative name.



114 Chapter 7. Barrier Method for Linear Programming

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

B
(x

)=
(ln

(
x)

)
= 1
= 0.5
= 0.1

I(x)

Figure 7.1: Alternative barrier functions for different values of µ. The dashed line represents the
indicator function I(x) going to infinity when x > 0

This formulation has a number of important benefits. First, notice how this problem is such that,
if one were to apply NR to solve its optimality conditions, one would be faced with solving linear
systems of equations, regardless of the nature of the constraints gi(x) ≤ 0, i = 1, . . . ,m (recall that
NR solves first-order approximations of the original system of equations). This creates a bridge
between linear algebra techniques and a wide range of nonlinear optimisation problems.

Moreover, as discussed earlier, one can also gradually decrease µ by making µk+1 = βµ with
β ∈ (0, 1). This method is an idea generally known as Sequential Unconstrained Minimisation
Technique (SUMT). As one may suspect, as µ → 0, we have that x∗(µ) → x∗, where x∗(µ) and
x∗ are the optimal values for problems Pµ and P , respectively. However, for small values of µ, the
barrier problem becomes challenging numerically, which does not come as a surprise as the barrier
resembles more and more the indicator function I and all its associated numerical issues.

Let us illustrate the above with an example. Consider the nonlinear problem

P : min.
{
f(x) = (x+ 1)2 : x ≥ 0

}
.

Notice that the unconstrained optimum would be x = −1 but the constrained optimum is x∗ = 0.
For this example, the barrier problem Pµ is

Pµ : min. f(x) +Bµ(x) = (x+ 1)2 − µ ln(x).

Because this is a univariate convex function, we know that the optimum is attained where the
derivative (f(x) +Bµ(x))

′ = 0. Thus, we have that

f ′(x) +B′
µ(x) = 0

2(x+ 1)− µ

x
= 2x2 + 2x− µ = 0.
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Figure 7.2: The optimal values of Pµ for different values of µ. Notice the trajectory formed by the
points x∗(µ) as µ→ 0.

The positive solution (since we must have that x > 0) of 2x2 + 2x− µ = 0 is given by

x∗(µ) =
−2 +√4 + 8µ

4
.

Notice that limµ→0 x
∗(µ) = 0, which is indeed the optimal x∗ for P . Figure 7.2 plots the function

f(x) + Bµ(x) for alternative values of µ indicating their minima (found by substituting the value
of µ in the expression for x∗(µ)).

The notion of interiority

There is an interesting link between barrier methods and the notion of interior points, which is, in
a way, the reason why the two ideas are equivalent. Before we show they are indeed equivalent,
let us explore this notion of interiority.

For a large enough µ, the solution of the barrier problem Pµ is close to the analytic centre of the
polyhedral feasibility set. The analytic centre of a polyhedral set is the point at which the distance
to all of the hyperplanes forming the set is maximal. More precisely, consider the polyhedral
set S = {x ∈ Rn : Ax ≤ b}. The analytic centre of S is given by the optimal solution x∗ of the
following problem

max.
x

m∏

i=1

(bi − a⊤i x)

s.t.: x ∈ S.

Notice that we obtain an equivalent problem, that is, a problem would return the same optimal
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solution x∗, if we take the logarithm of the objective function, this would lead to

min.
x

m∑

i=1

− ln(bi − a⊤i x)

s.t.: x ∈ S.

This allows us to infer something about the behaviour of the barrier method. For larger values of
µ, the optimal solution of x∗(µ) will lie close to the analytical centre of the feasible region. On the
other hand, as µ diminishes, the “pull” towards the centre slowly decays whilst the pull caused by
the objective function (that is, by its gradient −∇f(x)) slowly becomes more prevalent and steers
the solution towards x∗.

7.5 Barrier methods for linear programming problems

Let us consider again our linear programming problem in standard form

(P ) : min.
{
c⊤x : Ax = b, x ≥ 0

}

to which we want to devise a barrier problem. The barrier problem for P is

(Pµ) : min. c⊤x− µ
n∑

i=1

ln(xj)

s.t.: Ax = b (and x > 0).

By looking at this formulation, and relating to the previous discussion, a barrier method for a
linear programming problem operates such that in earlier iterations, or for larger µ values, the
optimal solution x(µ)∗ of Pµ tends to be pushed towards the centre of the feasible region, where
x > 0. As µ → 0, the influence of c⊤x gradually takes over, steering the solution towards the
optimal x∗ of P .

The most remarkable result, which ties together interior point methods and barrier methods for
linear programming problems, is the following. If we derive the Karush-Kuhn-Tucker optimality
conditions (Section 19.3 in the nonlinear optimization section of these notes) for Pµ, we obtain the
following set of conditions

Ax = b, x > 0

A⊤p = c− µ
(

1

x1
, . . . ,

1

xn

)
.

Using the same notation as before (i.e., defining X and U), these can be equivalently rewritten as

Ax = b, x > 0

A⊤p+ u = c

u = µX−1e ⇒ XUe = µe,

which are exactly (7.4)-(7.6). Thus, it becomes clear that relaxing the complementarity condi-
tions in the way that we have done before is equivalent to imposing logarithmic barriers to the
nonnegativity constraints of x.
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There are many important consequences for the analysis of the method once this link is established.
One immediate consequence relates to the convergence of the method, meaning that as primal
and dual feasibility conditions are satisfied throughout the iterations of the method, as µ → 0,
complementarity conditions are satisfied in the limit, thus converging to the solution of the original
linear problem P .

Indeed, the trajectory formed by successive solutions {(x(µk), p(µk), u(µk))}k=1,2,... is called the
central path, which is a consequence of the interiority forced by the barrier function. This property
is the reason why barrier methods are sometimes called “path-following” methods.

It is interesting to also notice the information encoded in (7.6). First, notice from (7.5) that

A⊤p+ u = c⇔
p⊤(Ax) + u⊤x = c⊤x⇔
u⊤x = c⊤x− p⊤b.

That is, u⊤x provides us with an estimate of the current duality gap, which can be used to estimate
how far we are from the optimal solution. Moreover, notice that

u⊤x =

n∑

i=1

u(µ)ix(µ)i = nµ

meaning that the term µ indicates the average amount of violation per x and u variable pairs at
(xk, pk, uk).

A practical implementation of the barrier method

The version of the barrier method most often used has a few additional ideas incorporated into the
algorithm. One of the main ideas is using a single Newton step for each value of µ. That effectively
means that the iterates do not delineate exactly the central path formed by successively smaller
values of µ, but rather follow it only approximately.

More precisely, assume we start with µk > 0 and a (xk, pk, uk) close to (x(µk), p(µk), u(µk)).
Then, for a small β ∈ (0, 1), a Newton step with µk+1 = βµk leads to (xk+1, pk+1, uk+1) close to
x(µk+1), p(µk+1), u(µk+1). Now, to be more precise in terms of what is meant by close, we must
refer to the notion of central paths neighbourhoods.

A common neighbourhood often used in convergence analysis of the barrier method is

Nµk
(α) = {(x, p, u) : ∥XUe− µke∥2 ≤ αµk} ,

which essentially consists of a bound on the difference between the expected value of the com-
plementarity condition violation µ and that observed by the current solution (xk, pk, uk). The
parameter α ∈ (0, 1] is an arbitrary scalar that dictates the amount of such difference tolerated
and effectively controls how wide the neighbourhood is. Then, by setting values for β and α that
satisfy β = 1− σ√

n
for some σ ∈ (0, 1) (e.g., α = σ = 0.1), one can guarantee that the complemen-

tarity violation of the next iteration to be bounded such that (xk+1, pk+1, uk+1) ∈ Nµk+1
(α) [3].

Figure 7.3 illustrate this idea, depicting two successive iterates of the method remaining within
the shrinking neighbourhoods Nµk

(α).

Another important aspect of the method relates to the feasibility requirements of each step. Current
implementations of the method can be shown to converge under particular conditions even if the



118 Chapter 7. Barrier Method for Linear Programming
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Figure 7.3: An illustrative representation of the central path and how the method follows it
approximately

feasibility requirements are eased in the Newton system. In this case, it needs to be shown that
the Newton direction is also such that the amount of infeasibility in the system decreases as the
algorithm progresses.

The infeasible version of the algorithm is such that the so-called perturbed (or relaxed) system



A 0 0

0 A⊤ I

Uk 0 Xk





dk+1
x

dk+1
p

dk+1
u


 =




0

0

µk+1e−XkUke




becomes 

A 0 0

0 A⊤ I

Uk 0 Xk





dk+1
x

dk+1
p

dk+1
u


 = −




Axk − b
A⊤pk + uk − c
XkUke− µk+1e


 , (7.7)

where µk+1 = βµk.

The primal residual rp(x) = Ax− b and dual residual rd(p, u) = A⊤p+ u− c allow the method to
iterate through solutions (xk, pk, uk) that do not satisfy primal and/ or dual feasibility. A caveat
though is that the convergence analysis of this variant is more involved and requires additional
assumptions on the parameterisation of the algorithm for convergence.

To see how the residuals decay at each iteration, notice the following. Let r(w) = r(x, p, u) =
(rp(x), rd(p, u)). The optimality conditions (7.1)-(7.3) require the residuals to vanish, that is,
r(w) = 0. Now, let us consider the first-order approximation for r at wk for a Newton step dw.
This amounts to the following:

r(wk + dw) ≈ r(wk) +Dr(wk)dw,

where Dr(wk) is the Jacobian of r evaluated at wk. One can notice that, in this notation, the
solution dk+1

w to (7.7) is such that

Dr(wk)dk+1
w = −r(wk).



7.5. Barrier methods for linear programming problems 119

Now, let us consider the directional derivative of the norm of the updated residues in the direction
dk+1
w . That leads to the following conclusion

d

dt

∥∥r(wk + tdk+1
w )

∥∥2
2

∣∣∣
t=0

= 2r(wk)⊤Dr(wk)dk+1
w = −2∥r(wk)∥22 < 0.

This shows that the direction dk+1
w is a descent direction for the norm of the residues at wk which

leads to their eventual vanishing.

We are finally ready to pose the pseudocode of a working version of the barrier method, which is
displayed in Algorithm 4.

Algorithm 4 Barrier method for LP

1: initialise. (primal-dual feasible) (x0, p0, u0), ϵ > 0, µ0 = µ1 > 0, β ∈ (0, 1), k = 0.
2: while nµk > ϵ do
3: compute dk+1 = (dk+1

x , dk+1
p , dk+1

u ) using (7.7)

4: compute appropriate step size θk+1 = (θk+1
p , θk+1

d )

5: (xk+1, pk+1, uk+1) = (xk, pk, uk) + θk+1dk+1

6: k = k + 1
7: µk+1 = βµk

8: end while
9: return (xk, pk, uk).

Some final remarks are worth making. Barrier methods are perhaps the only class of methods that
are known for being strong contenders to the dominance of simplex method-based approaches for
linear programming problems. This stems from both a theoretical and an experimental perspective.
The convergence analysis available in [3] shows that the number of iterations of the barrier method,
for suitable parameterisation, is O(

√
n ln(1/ϵ)), whilst, for the simplex method, a similar analysis

would bound the number of iterations to be of the order O(2n). A conclusion stemming from these
results would be that barrier methods, being polynomial complexity algorithms, should outperform
the simplex method.

But in practice, this is not necessarily the case. Despite its complexity analysis, the simplex
method in practice often requires O(m) iterations (i.e., a typically modest multiple of m), where
m is the number of columns in the basis. On the other hand, practical observation has shown
barrier methods to typically require

√
n iterations or less and appear to be somewhat insensitive

to growth in the number of variables further to a certain point. On the other hand, one iteration of
the simplex method is rather inexpensive from a computational standpoint, while one iteration of
a barrier method is a potentially computationally demanding operation (as it requires the solution
of a large linear system of equations).

In general, simplex-method-based solvers are faster on problems of small to medium dimensions,
while barrier methods are competitive, and often faster, on large problems. However, this is not
a rule, as the performance is dependent on the structure of the particular application. In the
end, it all boils down to how effectively the underlying liner system solver can exploit particular
structural features that allow using dedicated numerical algebra methods (e.g., sparsity and the
use of Cholesky decomposition combined with triangular solves).

Moreover, barrier methods are generally not able to take full advantage of any prior knowledge
about the solution, such as an estimate of the solution itself or some suboptimal basis. Hence,
barrier methods are less useful than simplex approaches in situations in which “warm-start” infor-
mation is available. One situation of this type involves branch-and-bound algorithms for solving
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integer programs, where each node in the branch-and-bound tree requires the solution of a linear
program that differs only slightly from one already solved in the parent node. In other situations,
we may wish to solve a sequence of linear programs in which the data is perturbed slightly to
investigate the sensitivity of the solutions, or in which we approximate a non-linear optimisation
problem by a sequence of linear programs. In none of the aforementioned scenarios can barrier
methods be used as efficiently as the simplex method (dual or primal, depending on the context).



7.6. Exercises 121

7.6 Exercises

Exercise 7.1: Step size rule for the barrier method

Solve the following optimisation problem using the barrier method.

(P ) min x1 + x2 (7.8)

s.t. 2x1 + x2 ≥ 8 (7.9)

x1 + 2x2 ≥ 10 (7.10)

xi ≥ 0, ∀i ∈ {1, 2} (7.11)

(a) Solve the problem using a constant step size θ = 1.

(b) Derive a step size rule for the barrier method based on retaining primal and dual feasibility.

(c) Amend the solution from part (a) to incorporate the step size calculation stage. Utilise the
step size rule derived in part (b). Then, resolve the problem.
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Chapter 8

Integer Programming Models

8.1 Types of integer programming problems

In this chapter, we will consider problems in which we have the presence of integer variables.
As we will see in the next chapters, the inclusion of integrality requirements imposes further
computational and theoretical challenges that we must overcome to be able to solve these problems.
On the other hand, being able to consider integer variables allows for the modelling of far more
complex and sophisticated systems. To an extent, this is precisely why integer programming
problems, or more specifically, mixed-integer programming problems, are by far the most common
in practice.

As we did in the first chapter, we will start our discussion by presenting general problems that have
particular structures. These structures can often be identified in larger and more complex settings.
This will also help exemplify how integer variables can be used to model particular features of
optimisation problems.

Let us first specify what we mean by an integer programming problem. Our starting point is a
linear programming problem:

(P) : min. c⊤x

s.t.: Ax ≤ b
x ≥ 0,

where A is an m×n matrix, c an n-dimensional vector, b an m-dimensional vector, and x a vector
of n decision variables.

We say that P is an integer programming problem if the variables x must take integer values, i.e.,
x ∈ Zn. If the variables are further constrained to be binary, i.e., x ∈ {0, 1}n, we say that it is
a binary programming problem. Perhaps the most common setting is when only a subset of the
variables are constrained to be integer or binary (say p of them), i.e., x ∈ Rn−p × Zp. This is
what is referred to as mixed-integer programming, or MIP. The most common setting for integer
programming problems is to have binary variables only, or a combination of binary and continuous
variables.

One important distinction must be made. A closely related concept is that of combinatorial
optimisation problems, which refer to problems of the form

min.
S⊆N




∑

j∈S

cj : S ∈ F ⊆ N



 ,

where cj , j ∈ N , is a weight, and F is a family of feasible subsets. As the name suggests, in these
problems we are trying to form combinations of elements such that a measure (i.e., an objective

123
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function) is optimised. Integer programming happens to be an important framework for expressing
combinatorial optimisation problems, though both integer programming and combinatorial opti-
misation expand further to other settings as well. To see this connection, let us define an incidence
vector xS of S such that

xSj =

{
1, if j ∈ S
0, otherwise.

Incidence vectors will permeate many of the (mixed-)integer programming formulations we will
see. Notice that, once xS is defined, the objective function simply becomes

∑
j∈N cjxj . Integer

programming formulations are particularly suited for combinatorial optimisation problems when
F can be represented by a collection of linear constraints.

8.2 (Mixed-)integer programming applications

We will consider now a few examples of integer and mixed-integer programming models with
somewhat general structure. As we will see, many of these examples have features that can be
combined into more general models.

8.2.1 The assignment problem

Consider the following setting. Assume that we must execute n jobs, which must be assigned to
n distinct workers. Each job can be assigned to a worker only, and, analogously, each worker can
only be assigned to one job. Assigning a worker i to a job j costs Cij , which could measure, e.g.,
the time taken by worker i to execute job j. Our objective is to find a minimum cost assignment
between workers and jobs. Figure 8.1a illustrates all possible worker-job assignments as arcs
between nodes representing workers on the left and jobs on the right. Figure 8.1b represents one
possible assignment.

workers jobs

1

2

3

4

1

2

3

4

(a)

workers jobs

1

2

3

4

1

2

3

4

C12

C24

C31

C43

(b)

Figure 8.1: An illustration of all potential assignments as a graph and an example of one possible
assignment, with total cost C12 + C31 + C24 + C43

To represent the problem, let xij = 1 if worker i is assigned to job j and 0, otherwise. Let
N = {1, . . . , n} be a set of indices of workers and jobs (we can use the same set since they are of
same number). The integer programming model that represent the assignment problem is given
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by

(AP ) : min.
∑

i∈N

∑

j∈N

Cijxij

s.t.:
∑

j∈N

xij = 1, ∀i ∈ N
∑

i∈N

xij = 1, ∀j ∈ N

xij ∈ {0, 1} , ∀i,∀j ∈ N.

Before we proceed, let us make a parallel to combinatorial problems. The assignment problem is an
example of a combinatorial problem, which can be posed by making (i) N the set of all job-worker
pairs (i, j); (ii) S ∈ F the (i, j) pairs in which i and j appear in exactly one pair, and, (iii) xS such
that xij , where i, j = 1, . . . , n. Thus, the assignment problem is an example of a combinatorial
optimisation problem that can be represented as an integer programming formulation.

8.2.2 The knapsack problem

The knapsack problem is another combinatorial optimisation problem that arises in several appli-
cations. Consider that we have a collection of n items from which we must make a selection. Each
item has associated a cost Ai (e.g., weight) and our selection must be such that the total cost
associated with the selection does not exceed a budget B (e.g., weight limit). Each item has also
a value Ci associated, and our objective is to find a maximum-valued selection of items such that
it does not exceed the budget.

To model that, let us define xi = 1 if item i is selected and 0, otherwise. Let N = {1, . . . , n} be the
set of items. Then, the knapsack problem can be represented as the following integer programming
problem

(KP ) : max.
x

n∑

i=1

Cixi

s.t.:

n∑

i=1

Aixi ≤ B

xi ∈ {0, 1} , ∀i ∈ N.

Notice that the knapsack problem has variants in which an item can be selected a certain number
of times, or that multiple knapsacks must be considered simultaneously, both being generalisations
of KP .

Also, the knapsack problem is also a combinatorial optimisation problem, which can be stated by
defining (i) N the set of all items {1, . . . , n}, (ii) S ∈ F the subset of items with total cost not
greater than B, and (iii) xS such that xi,∀i ∈ N .

8.2.3 The generalised assignment problem

The generalised assignment problem (or GAP) is a generalisation of the assignment problem in-
cluding a structure that resembles that of a knapsack problem. In this case, we consider the notion
of bins, to each the items have to be assigned. In this case, multiple items can be assigned to a
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items bins
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Figure 8.2: An example of a bin packing with total cost C11 + C12 + C23 + C44

bin, or a bin might have no item assigned. In some contexts, this problem is also known as the bin
packing problem.

In this case, we would like to assign all of the m items to n bins, observing that the capacity B of
each bin cannot be exceeded by the weights Ai of the items assigned to that bin. We know that
assigning the item i = 1, . . . ,m to the bin j = 1, . . . , n costs Cij . Our objective is to obtain a
minimum-cost bin assignment (or packing) that does not exceed any of the bin capacities. Figure
8.2 illustrates a possible assignment of items to bins. Notice that the number of total bins does
not necessarily need to be the same the number of items.

To formulate the generalised assignment problem as an integer programming problem, let us define
xij = 1, if item i is packed into bin j, and xij = 0 otherwise. Moreover, let M = {1, . . . ,m} be
the set of items and N = {1, . . . , n} be the set of bins. Then, the problem can be formulated as
follows.

(GAP ) : min.
x

∑

i∈M

∑

j∈N

Cijxij

s.t.:

n∑

j=1

xij = 1, ∀i ∈M

m∑

i=1

Aixij ≤ Bj , ∀j ∈ N

xij ∈ {0, 1} , ∀i ∈M,∀j ∈ N.

Hopefully, the parallel to the combinatorial optimisation problem version is clear at this point and
is let for the reader as a thought exercise.

8.2.4 The set covering problem

Set covering problems are related to the location of infrastructure (or facilities) with the objective
of covering demand points and, thus, frequently recurring in settings where service centres such as
fire brigades, hospitals, or police stations must be located to efficiently serve locations.

Let M = {1, . . . ,m} be a set of regions that must be served by opening service centres. A centre
can be opened at any of the N = {1, . . . , n} possible locations. If a centre is opened at location
J ∈ N , then it serves (or covers) a subset of regions Sj ⊆ M and has associated opening cost Cj .
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Our objective is to decide where to open the centres so that all regions are served and the total
opening cost is minimised.

Figure 8.3 illustrates an example of a set covering problem based on a fictitious map broken
into cells representing, e.g., regions. Each of the cells represents a region that must be covered,
i.e., M = {1, . . . , 20}. The blue cells represent regions that can have a centre opened, that is,
N = {3, 4, 7, 11, 12, 14, 19}. Notice that N ⊂ M . In this case, we assume that if a centre is
opened at a blue cell, then it can serve the respective cell and all adjacent cells. For example,
S3 = {1, 2, 3, 8}, S4 = {2, 4, 5, 6, 7}, and so forth.

Figure 8.3: The hive map illustrating the set covering problem. Our objective is to cover all of the
regions while minimising the total cost incurred by opening the centres at the blue cells

To model the set covering problem, and pretty much any other problem involving indexed subsets
such as Sj , ∀j ∈ N , we need an auxiliary parameter matrix A, often referred to as 0-1 incidence
matrix such that

A =

{
Aij = 1, if i ∈ Sj ,

Aij = 0, otherwise.

For example, referring to Figure 8.3, the first column of A would refer to j = 3 and would have
nonzero values at rows 1, 2, 3, and 8.

We are now ready to pose the set covering problem as an integer programming problem. For that,
let xj = 1 if a facility is opened (or a service centre is located) at location j and xj = 0, otherwise.
In addition, let M = {1, . . . ,m} be the set of regions to be served and N = {1, . . . , n} be the set
of candidate places to have a facility opened. Then, the set covering problem can be formulated
as follows.

(SCP ) : min.
x

∑

j∈N

Cjxj

s.t.:
∑

j∈N

Aijxj ≥ 1, ∀i ∈M

xj ∈ {0, 1} , ∀j ∈ N.

As a final note, notice that this problem can also be posed as a combinatorial optimisation problem
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of the form

min.
T⊆N




∑

j∈T

Cj :
⋃

j∈T

Sj =M



 ,

in which the locations j ∈ T can be represented as an incidence vector, as before.

8.2.5 Travelling salesperson problem

The travelling salesperson problem (TSP) is one of the most famous combinatorial optimisation
problems, perhaps due to its interesting mix of simplicity while being computationally challenging.
Assume that we must visit a collection of n cities at most once, and return to our initial point,
forming a so-called tour. When travelling from a city i to a city j, we incur in the cost Cij ,
representing, for example, distance or time. Our objective is to minimise the total cost of our tour.
Notice that this is equivalent to finding the minimal cost permutation of n − 1 cities, discarding
the city which represents our starting and end point. Figure 8.4 illustrates a collection of cities
and one possible tour.

3

2

4 5

1 6

Figure 8.4: An example of a tour between the six cities

To pose the problem as an integer programming model, let us define xij = 1 if city j is visited
directly after city i, and xij = 0 otherwise. Let N = {1, . . . , n} be the set of cities. We assume
that xii is not defined for i ∈ N . A naive model for the travelling salesperson problem would be

(TSP ) : min.
x

∑

i∈N

∑

j∈N

Cijxij

s.t.:
∑

j∈N\{i}
xij = 1, ∀i ∈ N

∑

i∈N\{j}
xij = 1, ∀j ∈ N

xij ∈ {0, 1} , ∀i,∀j ∈ N : i ̸= j

First, notice that the formulation of TSP is exactly the same as that of the assignment problem.
However, this formulation has an issue. Although it can guarantee that all cities are only visited
once, it cannot enforce an important feature of the problem which is that the tour cannot present
disconnections, i.e., contain sub-tours. In other words, the salesperson must physically visit from
city to city in the tour, and cannot “teleport” from one city to another. Figure 8.5 illustrates the
concept of sub-tours.

In order to prevent sub-tours, we must include constraints that can enforce the full connectivity
of the tour. There are mainly two types of such constraints. The first is called cut-set constraints
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1

2 3

4 5

6

Figure 8.5: A feasible solution for the naive TSP model. Notice the two sub-tours formed

and is defined as ∑

i∈S

∑

j∈N\S
xij ≥ 1, ∀S ⊂ N, 2 ≤ |S| ≤ n− 1.

The cut-set constraints act by guaranteeing that among any subset of nodes S ⊆ N there is always
at least one arc (i, j) connecting one of the nodes in S and a node not in S.

An alternative type of constraint is called sub-tour elimination constraint and is of the form

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, ∀S ⊂ N, 2 ≤ |S| ≤ n− 1.

Differently from the cutset constraints, the sub-tour elimination constraints prevent the cardinality
of the nodes in each subset from matching the cardinality of arcs within the same subset.

For example, consider the sub-tours illustrated in Figure 8.5 and assume that we would like to
prevent the sub-tour formed by S = {1, 2, 3}. Then the cutset constraint would be of the form

x14 + x24 + x34 + x15 + x25 + x35 + x16 + x26 + x36 ≥ 1

while the sub-tour elimination would be of the form

x12 + x13 + x21 + x23 + x31 + x32 ≤ 2

There are some differences between these two constraints and, typically cutset, constraints are
preferred for being stronger (we will discuss the notion of stronger constraints in the next chapters).
In any case, either of them suffers from the same problem: the number of such constraints quickly
becomes computationally prohibitive as the number of nodes increases. This is because one would
have to generate a constraint to each possible node subset combination from sizes 2 to n− 1.

A possible remedy to this consists of relying on delayed constraint generation. In this case, one
can start from the naive formulation TSP and from the solution, observe whether there are any
sub-tours formed. That being the case, only the constraints eliminating the observed sub-tours
need to be generated, and the problem can be warm-started. This procedure typically terminates
far earlier than having all of the possible cutset or sub-tour elimination constraints generated.

8.2.6 Uncapacitated facility location

This is the first mixed-integer programming we consider. In this, we would like to design a network
that can supply clients i ∈M by opening (or locating, as it is referred to in this context) facilities
among candidate locations j ∈ N . Opening a facility incurs in the fixed cost Fj , and serving a
client i ∈M from a facility that has been located at j ∈ N costs Cij . Our objective is to design the
most cost-effective production and distribution network. That is, we must decide where to locate
facilities and how to serve clients (from these facilities) with minimum total (locating plus service)
cost. Figure 8.6a illustrates an example of the problem with M = {1, . . . , 8} and N = {1, . . . , 6}
and Figure 8.6b presents one possible configuration with two facilities. The optimal number of
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facilities located and the client-facility association depends on the trade-offs between locating and
service costs.

i1

i2

i3

i4

i5

i6

i7

i8

j1

j2

j3

j4

j5

j6

(a)

i1

i2

i3

i4

i5

i6

i7

i8

j1

j2

j3

j4

j5

j6

j3

j1

(b)

Figure 8.6: An illustration of the facility location problem and one possible solution with two
facilities located (right)

To formulate the problem as a mixed-integer programming problem, let us define xij as the fraction
of the demand in i ∈ M being served by a facility located at j ∈ N . In addition, we define the
binary variable yj such that yj = 1, if a facility is located at j ∈ N and 0, otherwise. With those,
the uncapacitated facility location (or UFL) problem can be formulated as

(UFL) : min.
x,y

∑

j∈N

Fjyj +
∑

i∈M

∑

j∈N

Cijxij (8.1)

s.t.:
∑

j∈N

xij = 1, ∀i ∈M (8.2)

∑

i∈M

xij ≤ myj , ∀j ∈ N (8.3)

xij ≥ 0,∀i ∈M, ∀j ∈ N (8.4)

yj ∈ {0, 1} , ∀j ∈ N. (8.5)

Some features of this model are worth highlighting. First, notice that the absolute values associated
with the demand at nodes i ∈ M are somewhat implicitly represented in the cost parameter Cij .
This is an important modelling feature that allows the formulation to be not only stronger but
also more numerically favourable (avoiding large coefficients). Therefore, the demand is thought
as being, at each node, 1 or 100%, and 0 ≤ xij ≤ 1 represents the fraction of the demand at i ∈M
being served by a facility eventually located at j ∈ N . Second, notice how the variable xij is only
allowed to be greater than zero if the variable yj is set to 1, due to (8.3). Notice that m, the
number of clients, is acting as a maximum upper bound for the amount of demand being served
from the facility j, which would be at most m when only one facility is located. That constraint
is precisely the reason why the problem is called uncapacitated, since, in principle, there are no
capacity limitations on how much demand is served from a facility.

Facility location problems are frequent in applications associated with supply chain planning prob-
lems and can be specialised to a multitude of settings, including capacitated versions (both nodes
and arcs), versions where the arcs must also be located (or built), having multiple echelons, and
so forth.
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8.2.7 Uncapacitated lot-sizing

Another example of an important mixed-integer programming formulation is the uncapacitated
lot-sizing. In this, we would like to plan the production of a single product over a collection of
time periods T = {1, . . . , n}. We have encountered this problem before in Chapter 1, but now
we consider the variation in which the production activity implies in a fixed cost Ft, representing,
for example, a setup cost or the need for renting equipment. Once again, we incur a cost Ct to
produce one unit in period t and Ht is paid to store one unit of product from period t to period
t+ 1.

Let us define pt ≥ 0 be the amount produced in period t ∈ T , and st ≥ 0 as the amount stored at
the end of period t ∈ T . In addition, let yt ∈ {0, 1} indicate whether production occurs in period
t ∈ T . Also, assume that M is a sufficiently large constraint. Then, the uncapacitated lot-sizing
(ULS) can be formulated as

(ULS) : min.
x,s,y

∑

t∈N

(Ftyt + Ptpt +Htst)

s.t.: st−1 + pt = dt + st, ∀t ∈ N
pt ≤Myt, ∀t ∈ N (8.6)

st, pt ≥ 0, ∀t ∈ N
yt ∈ {0, 1} , ∀t ∈ N.

Notice that the formulation of ULS is very similar to that seen in Chapter 1, with exception of the
variable yt, its associated fixed cost term

∑
t∈T Fjyj and the constraint (8.6). This constraint is

precisely what renders the “uncapacitated” nomenclature, and is commonly known in the context
of mixed-integer programming as big-M constraints. Notice that the constant M is playing the
role of +∞: it only really makes the constraint relevant when yt = 0, so that pt ≤ 0 is enforced,
making thus pt = 0. However, this interpretation has to be taken carefully. Big-M constraints
are known for being the cause of numerical issues and worsening the performance of mixed-integer
programming solver methods. Thus, the value of M must be set such that it is the smallest
value possible such that it does not artificially create a constraint. Finding these values are often
challenging and instance dependent. In the capacitated case, M can trivially take the value of the
production capacity.

8.3 Good formulations

In this section, we discuss what makes a formulation a better formulation for a (mixed-)integer
programming (MIP) problem. Just like it is the case with any mathematical programming appli-
cation, there are potentially infinite possible ways to formulate the same problem. While in the
case of linear programming (i.e., only continuous variables), alternative formulations typically do
not lead to significant differences in terms of computational performance, the same is definitely
not true in the context of MIP. In fact, whether a MIP problem can be solved in a reasonable
computational time often depend on having a good, or strong, formulation.

Therefore, it is fundamental that we can recognise which of alternative formulations might yield
better computational performance. But first, we must be able to understand the source of these
differences. For that, the first thing to realise is that solution methods for MIP models rely on
successively solving linear programming models called linear programming (LP) relaxations. How
exactly this happens will be the subject of our next chapters. But for now, one can infer that the



132 Chapter 8. Integer Programming Models

best formulation will be the one that requires the solution of the least of such LP relaxations. And
precisely, it so turns out that the number of LP relaxations that need to be solved (and, hence,
performance) is strongly dependent on how closely it resembles the convex hull of the feasible
solutions.

An LP relaxation simply consists of a version of the original MIP problem in which the integrality
requirements are dropped. Most of the methods used to solve MIP models are based on LP
relaxation. There are several reasons why the employment of LP relaxations is a good strategy.
First, we can solve (and resolve) LP problems efficiently. Secondly, the solution of the LP relaxation
can be used to reduce the search space of the original MIP. However, simply rounding the solution
of the LP relaxation will typically not lead to relevant solutions.

Let us illustrate the geometry of an integer programming model, such that the points we were
discussing become more evident. Consider the problem

(P ) : max.
x

x1 +
16

25
x2

s.t.: 50x1 + 31x2 ≤ 250

3x1 + 31x2 ≥ −4
x1, x2 ∈ Z+.

The feasible region of problem P is represented in Figure 8.7. First, notice how in this case the
feasible region is not a polyhedral set anymore, but yet a collection of discrete points (represented
in blue) that happen to be within the polyhedral set formed the linear constraints. This is one of
the main complicating features of MIPs because the premise of convexity does not hold anymore.
Another point can be noticed in Figure 8.7. Notice that rounding the solution obtained from
the LP relaxation would in most cases lead to infeasible solutions, except when x1 is rounded
up and x2 rounded down, which leads to the suboptimal solution (2, 5). However, one can still
graphically find the optimal solution using exactly the same procedure as that employed for linear
programming problems, which would lead to the optimal integer solution (5, 0).

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

opt. IP sol

LP sol. (376/193, 950/193)

Figure 8.7: Graphical representation of the feasible region of the example

8.3.1 Comparing formulations

In order to be able to compare formulations, we require some specific definitions, including a precise
definition of what is a formulation.



8.3. Good formulations 133

Definition 8.1. A polyhedral set P = {x ∈ Rn+p : Ax ≤ b} is a formulation for a set X ⊆ Zn×Rp

if and only if X = P ∩ (Zn × Rp).

One aspect that can be noticed from Definition 8.1 is that the feasible region of an integer pro-
gramming problem is a collection of points, represented by X. This is illustrated in Figure 8.8,
where one can see three alternative formulations, P1, P2, and P3 for the same set X.

0 1 2 3 4 5

0

1

2

3

4

5

x1

x2

P3

P2 P1

Figure 8.8: An illustration of three alternative formulations for X. Notice that P3 is an ideal
formulation, representing the convex hull of X.

The formulation P3 has a special feature associated with it. Notice how all extreme points of P3

belong to X. This has an important consequence. That implies that the solution of the original
integer programming problem can be obtained by solving a single LP relaxation, since the solution
of both problems is the same. This is precisely what characterises an ideal formulation, which is
that leading to a minimal (i.e., only one) number of required LP relaxation solutions as solving an
LP relaxation over an ideal P yields a solution x ∈ X for any cost vector c. This will only be the
case if the formulation P is the convex hull of X.

This is the case because of two important properties relating the setX and its convex hull conv(X).
The first is that conv(X) is a polyhedral set and the second is that the extreme points of conv(X)
belong toX. We summarise those two facts in Proposition 8.2, to which we will refer shortly. Notice
that the proof for the proposition can be derived from Definition 2.7 and Theorem 2.8.

Proposition 8.2. conv(X) is a polyhedral set and all its extreme points belong to X.

If P is such that P = conv(X), the original problem

min.
{
c⊤x : x ∈ X

}
,

can, in principle, be replaced with

min.
{
c⊤x : x ∈ conv(X)

}
,

where we have that

X = {Ax ≤ b, x ∈ Zn × Rp} and conv(X) =
{
Ax ≤ b, x ∈ Rn+p

+

}
.

Unfortunately, this is often not the case. Typically, except for some specific cases, a description
of conv(X) is not known and deriving it algorithmically is an impractical computational task.
However, Proposition 8.2 allows us to define a structured way to compare formulations. This is
summarised in Definition 8.3.
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Definition 8.3. Given a set X ⊆ Zn×Rn and two formulations P1 and P2 for X, P1 is a better
formulation than P2 if P1 ⊂ P2.

Definition 8.3 gives us a framework to try to demonstrate that a given formulation is better than
another. If we can show that P1 ⊂ P2, then, by definition (literally), P1 is a better formulation
than P2. Clearly, this is not a perfect framework, since, for example, it would not be useful for
comparing P1 and P2 in Figure 8.8, and, in fact, there is nothing that can be said a priori about
the two in terms of which will render the better performance. Often, in the context of MIP, this
sort of analysis can only rely on careful computational experimentation.

A final point to make is that sometimes one must compare formulations of distinct dimensions,
that is, with a different number of variables. When that is the case, one can resort to projection,
as a means to compare both formulations onto the same space of variables.
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8.4 Exercises

Exercise 8.1: Uncapacitated lot sizing (ULS) formulations

Consider the following formulations P
(x,s,y)
ULS-1 and P

(w,y)
ULS-2 as linear (i.e., continuous) relaxations for

the ULS problem defined over N = {1, . . . , n} periods:

P
(x,s,y)
ULS-1 =





(x, s, y) : st−1 + xt = dt + st, ∀t ∈ N
xt ≤Myt, ∀t ∈ N
s0 = 0,

st ≥ 0, ∀t ∈ N
xt ≥ 0, ∀t ∈ N
0 ≤ yt ≤ 1, ∀t ∈ N





∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xt production in period t

st stock in period t

yt setup in period t

dt demand in period t

M maximum production

M =
∑

t∈N dt

P
(w,y)
ULS-2 =





(w, y) :
t∑

i=1

wit = dt, ∀t ∈ N
wit ≤ dtyi, ∀i, t ∈ N : i ≤ t
wit ≥ 0, ∀i, t ∈ N : i ≤ t
0 ≤ yt ≤ 1, ∀t ∈ N





∣∣∣∣∣∣∣∣∣∣

wit production in period i

to be used in period t

yt setup in period t

(a) Use projection to show that P
(w,y)
ULS-2 is stronger than P

(x,s,y)
ULS-1 , i.e, P

(w,y)
ULS-2 ⊂ P

(x,s,y)
ULS-1 .

Hint: First, construct an extended formulation P
(x,s,y,w)
ULS-2 by writing the variables xt and st in

terms of variables wit and add them to P
(w,y)
ULS-2. Then, use a projection to show that

proj
x,s,y

(P
(x,s,y,w)
ULS-2 ) ⊆ P (x,s,y)

ULS-1 ,

which is equivalent to P
(w,y)
ULS-2 ⊆ P

(x,s,y)
ULS-1 . Do this by verifying that each constraint of P

(x,s,y)
ULS-1

is satisfied by all (x, s, y) ∈ P
(x,s,y,w)
ULS-2 . Finally, show that a solution (x̄, s̄, ȳ) with x̄t = dt and

ȳt = dt/M , for all t ∈ N , satisfies (x̄, s̄, ȳ) ∈ P (x,s,y)
ULS-1 \ P

(x,s,y,w)
ULS-2 .

(b) The optimisation problems associated with the two ULS formulations are

(ULS-1) min.
x,s,y

∑
t∈N

(ftyt + ptxt + qtst)

s.t.: st−1 + xt = dt + st, ∀t ∈ N
xt ≤Myt, ∀t ∈ N
s0 = 0,

st ≥ 0, ∀t ∈ N
xt ≥ 0, ∀t ∈ N
0 ≤ yt ≤ 1, ∀t ∈ N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xt production in period t

st stock in period t

yt setup in period t

dt demand in period t

M maximum production

M =
∑

t∈N dt
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(ULS-2) min.
w,y

∑
t∈N

[
ftyt + pt

n∑
i=t

wti + qt
t∑

i=1

(
n∑

j=i

wij − di
)]

s.t.:
t∑

i=1

wit = dt, ∀t ∈ N
wit ≤ dtyi, ∀i, t ∈ N : i ≤ t
wit ≥ 0, ∀i, t ∈ N : i ≤ t
0 ≤ yt ≤ 1, ∀t ∈ N

∣∣∣∣∣∣∣∣

wit production in period i

to be used in period t

yt setup in period t

Consider a ULS problem instance over N = {1, . . . , 6} periods with demands d = (6, 7, 4, 6, 3, 8),
set-up costs f = (12, 15, 30, 23, 19, 45), unit production costs p = (3, 4, 3, 4, 4, 5), unit storage costs

q = (1, 1, 1, 1, 1, 1), and maximum production capacity M =
∑6

i=1 dj = 34. Solve the problems
ULS-1 and ULS-2 with Julia using JuMP to verify the result of part (a) computationally.

Exercise 8.2: TSP formulation - MTZ

Show that the following formulation PMTZ is valid for the TSP defined on a directed graph
G = (N,A) with N = {1, . . . , n} cities and arcs A = {(i, j) : i, j ∈ N, i ̸= j} between cities.

PMTZ =





∑

j∈N\{i}
xij = 1, ∀i ∈ N

∑

j∈N\{i}
xji = 1, ∀i ∈ N

ui − uj + (n− 1)xij ≤ n− 2, ∀i, j ∈ N \ {1} : i ̸= j (∗)
xij ∈ {0, 1}, ∀i, j ∈ N : i ̸= j

where xij = 1 if city j ∈ N is visited immediately after city i ∈ N , and xij = 0 otherwise.
Constraints (∗) with the variables ui ∈ R for all i ∈ N are called Miller-Tucker-Zemlin (MTZ)
subtour elimination constraints.

Hint: Formulation PMTZ is otherwise similar to the formulation presented, except for the con-
straints (∗) which replace either the cutset constraints

∑

i∈S

∑

j∈N\S
xij ≥ 1, ∀S ⊂ N,S ̸= ∅,

or the subtour elimination constraints

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, ∀S ⊂ N, 2 ≤ |S| ≤ n− 1,

which are used to prevent subtours in TSP solutions. Thus, you have to show that:

(1) Constraints (∗) prevent subtours in any solution x ∈ PMTZ .

(2) Every TSP solution x (on the same graph G) satisfies the constraints (∗).
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You can prove (1) by contradiction. First, assume that a solution x ∈ PMTZ has a subtour with k
arcs (i1, i2), . . . , (ik−1, ik), (ik, i1) and k nodes {i1, . . . , ik} ∈ N \ {1}. Then, write the constraints
(∗) for all arcs in this subtour and try to come up with a contradiction.

You can prove (2) by finding suitable values for each u2, . . . , un that will satisfy the constraints
(∗) for any TSP solution x. Recall that a TSP solution represents a tour that visits each of the
N = {1, . . . , n} cities exactly once and returns to the starting city.

Exercise 8.3: TSP implementation

Solve a 15 node TSP instance using the formulation PMTZ presented in Exercise 8.1. You can
randomly generate city coordinates in xy-plane for all N = {1, . . . , n} cities. Letting cij denote
the distance between cities i and j, the problem MTZ can be formulated as

(MTZ) : min.
x,u

∑

i∈N

∑

j∈N

cijxij

s.t.:
∑

j∈N\{i}
xij = 1, ∀i ∈ N,

∑

j∈N\{i}
xji = 1, ∀i ∈ N,

ui − uj + (n− 1)xij ≤ n− 2, ∀i, j ∈ N \ {1} : i ̸= j,

xij ∈ {0, 1}, ∀i, j ∈ N : i ̸= j.

Implement the model and solve the problem instance with Julia using JuMP.

Exercise 8.4: TSP formulation - tightening the MTZ formulation

Recall the MTZ formulation for the Travelling Salesperson Problem (TSP) presented in Exercise
8.2.

(a) Show that the inequalities (8.7) - (8.10) are valid for the TSP problem (i.e., they hold for any
feasible solution of the TSP problem), assuming that n > 2:

xij + xji ≤ 1, ∀i, j ∈ N : i ̸= j (8.7)

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2, ∀i, j ∈ N \ {1} : i ̸= j (8.8)

uj − 1 + (n− 2)x1j ≤ n− 1 ∀j ∈ N \ {1} (8.9)

1− ui + (n− 1)xi1 ≤ 0 ∀i ∈ N \ {1} (8.10)

Hint: You can assume that the variables u2, . . . , un take unique integer values from the set
{2, . . . , n}. That is, we have ui ∈ {2, . . . , n} for all i = 2, . . . , n with ui ̸= uj for all i, j ∈ 2, . . . , n.
This holds for any TSP solution of problem MTZ as we showed in Exercise 8.2. If we fix city 1 as
the starting city, then the value of each ui represents the position of city i in the TSP tour, i.e.,
ui = t for t = 2, . . . , n if city i ̸= 1 is the t:th city in the tour. You have to check that each of the
inequalities (8.7) - (8.10) hold (individually) for any arc (i, j) ∈ A and city i ∈ N that are part of
the inequality, by checking that the following two cases are satisfied: either xij = 0 or xij = 1.
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(b) Add all four sets of inequalities (8.7) - (8.10) to the MTZ formulation and compare the com-
putational performance against the model with no extra inequalities.

Exercise 8.5: Scheduling problem

A set of N = {1, . . . , n} jobs must be carried out on a single machine that can do only one job
at a time. Each job j ∈ N takes pj hours to complete. Given job weights wj for all j ∈ N , in
what order should the jobs be carried out so as to minimise the weighted sum of their start times?
Formulate this scheduling problem as a mixed integer-programming problem.

Exercise 8.6: Piecewise linear objective functions and logical constraints

Recall the paint factory problem

max. z = 5x1 + 4x2 (8.11)

s.t.: 6x1 + 4x2 ≤ 24 (8.12)

x1 + 2x2 ≤ 6 (8.13)

x2 − x1 ≤ 1 (8.14)

x2 ≤ 2 (8.15)

x1, x2 ≥ 0, (8.16)

where x1 representes the amount (in tons) of exterior paint produced, and x2 the amount of
interior paint produced. This is a simple linear problem that has been used as an illustrative
example throughout the lecture notes.

To demonstrate some typical structures in integer programming models, we now add two modifi-
cations to the problem, namely

• Piecewise linear functions: the profit for exterior paint depends on the amount produced.
The profit for the first ton produced is 7 ($1000/ton), while the next ton can only be sold at
a profit of 5, the third for a profit of 3 and the fourth ton only makes a profit of 1.

• Logical constraints: the factory has to produce at least 1.5 tons of at least one of the two
paint types, that is, either x1 ≥ 1.5 or x2 ≥ 1.5 must hold.

As seen in Fig. 8.9, these modifications result in a nonlinear objective function and a nonconvex
feasible region. Using additional integer/binary variables, formulate and solve the problem as a
mixed-integer linear problem.
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Figure 8.9: The feasible region of the problem, and the contours of the objective function
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Chapter 9

Branch-and-bound Method

9.1 Optimality for integer programming problems

We will now discuss a method to solve mixed-integer programming problems that rely on the
successive solution of linear programming relaxations. Although there are several methods that
can be employed to solve combinatorial optimisation problems, most of them are not capable of
providing optimality guarantees for the solution obtained (e.g., are heuristics or metaheuristics)
or do not exploit the availability of a (linear) mathematical programming formulation. To date,
the most widespread method that is capable of both is something that is generally known as a
branch-and-cut method.

Branch-and-cut methods are composed of a combination of multiple parts, including, among other
techniques, a branch-and-bound coordination scheme, cutting planes, and heuristics as well. In the
next chapters, we will focus on each of these parts individually, starting with the branch-and-bound
method.

9.2 Relaxations

Before we present the method itself, let us discuss the more general concept of relaxation. We have
visited the concept somewhat informally before, but now we will concentrate on a more concrete
definition.

Consider an integer programming problem of the form

z = min.
x

{
c⊤x : x ∈ X ⊆ Zn

}
.

To prove that a given solution x∗ is optimal, we must rely on the notion of bounding. That is,
we must provide a pair of upper and lower bounds that are as close (or tight) as possible. If it
happens that these bounds have the same value, and thus match the value of z = c⊤x∗, we have
available a certificate of optimality for x∗. This concept must sound familiar to you. We already
used similar arguments in Chapter 5, when we introduced the notion of dual bounds.

Most methods that can prove optimality work by bounding the optimal solution. In this context,
bounding means to construct an increasing sequence of lower bounds

z1 < z2 < · · · < zs ≤ z

and a decreasing sequence of upper bounds

z1 > z2 > · · · > zt ≥ z

141
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to obtain as tight as possible lower (z ≤ z) and upper (z ≥ z) bounds. Notice that the process can
be arbitrarily stopped when zt − zs ≤ ϵ, where s and t are some positive integers and ϵ > 0 is a
predefined (suitably small) tolerance. The term ϵ represents an absolute optimality gap, meaning
that one can guarantee that the optimal value is at most greater than z by ϵ units and at most
smaller than z by ϵ units. In other words, the optimal value must be either z, z, or a value in
between.

This framework immediately poses the key challenge of deriving such bounds efficiently. It turns
out that this is a challenge that goes beyond the context of mixed-integer programming problems.
In fact, we will see this idea of bounding in Chapter 12, when we discuss decomposition methods,
which also generate lower and upper bounds during their execution.

Regardless of the context, bounds are typically of two types: primal bounds, which are bounds
obtained by evaluating a feasible solution (i..e, that satisfy primal feasibility conditions); and dual
bounds, which are typically attained when primal feasibility is allowed to be violated so that a
dual feasible solution is obtained. In the context of minimisation, primal bounds are upper bounds
(to be minimised), while dual bounds are lower bounds (to be maximised). Clearly, in the case of
maximisation, the reverse holds.

Primal bounds can be obtained by means of a feasible solution. For example, one can heuristically
assemble a solution that is feasible by construction. On the other hand, dual bounds are typically
obtained by means of solving a relaxation of the original problem. We are ready now to provide
Definition 9.1, which formally states the notion of relaxation.

Definition 9.1 (Relaxation). A problem

(RP ) : zRP = min.
{
c⊤x : x ∈ X ⊆ Rn

}

is a relaxation of problem
(P ) : z = min.

{
c⊤x : x ∈ X ⊆ Rn

}

if X ⊆ X, and c⊤x ≤ c⊤x, ∀x ∈ X.

Definition 9.1 provides an interesting insight related to relaxations: they typically comprise an
expansion of the feasible region, possibly combined with an objective function bounding. Thus,
two main strategies to obtain relaxations are to enlarge the feasible set by dropping constraints
and replacing the objective function with another of same or smaller value. One might notice at
this point that we have used a very similar argumentation to define linear programming duals in
Chapter 5. We will return to the relationship between relaxations and Lagrangian duality in a
more general setting in Part II, when we discuss the notion of Lagrangian relaxation.

Clearly, for relaxations to be useful in the context of solving mixed-integer programming problems,
they have to be easier to solve than the original problem. That being the case, we can then rely
on two important properties that relaxations have, which are crucial for using them as a means to
generate dual bounds. These are summarised in Proposition 9.2 and 9.3.

Proposition 9.2. If RP is a relaxation of P, then zRP is a dual bound for z.

Proof. Let x∗RP be the optimal solution for RP . For any optimal solution x∗ of P , we have that
x∗ ∈ X ⊆ X, which implies that x∗ ∈ X. Thus, we have that

z = c⊤x∗ ≥ c⊤x∗ ≥ c⊤x∗RP = zRP .

The first inequality is due to Definition 9.1 and the second is because x∗ is simply a feasible
solution, but not necessarily the optimal, for zRP .
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Proposition 9.3. The following statements are true:

1. If a relaxation RP is infeasible, then P is infeasible.

2. Let x∗ be an optimal solution for RP. If x∗ ∈ X and c⊤x∗ = c⊤x∗, then x∗ is an optimal
solution for P.

Proof. To prove (1), simply notice that if X = ∅, then X = ∅. Now, let x∗ be the optimal solution
for RP . To show (2), notice that as x∗ ∈ X, z ≤ c⊤x∗ = c⊤x∗RP = zRP . From Proposition 9.2, we
have z ≥ zRP . Thus, z = zRP .

9.2.1 Linear programming relaxation

In the context of solving (mixed-)integer programming problems, we will rely on the notion of
linear programming (LP) relaxations. We have briefly discussed the idea in the previous chapter,
but, for the sake of precision, let us first define what we mean by the term.

Definition 9.4 (Linear programming (LP) relaxation). The LP relaxation of an integer program-
ming problem min.

{
c⊤x : x ∈ P ∩ Zn

}
with P =

{
x ∈ Rn

+ : Ax ≤ b
}

is the linear programming

problem min.
{
c⊤x : x ∈ P

}
.

Notice that an LP relaxation is indeed a relaxation, since we are enlarging the feasible region by
dropping the integrality requirements while maintaining the same objective function (cf. Definition
9.1).

Let us consider a numerical example. Consider the integer programming problem

z = max.
x

4x1 − x2
s.t.: 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2
+.

A dual (upper; notice the maximisation) bound for z can be obtained by solving its LP relaxation,
which yields the bound zLP = 8.42 ≥ z. A primal (lower) bound can be obtained by choosing any
of the feasible solutions (e.g., (2, 1), to which z = 7 ≤ z). This is illustrated in Figure 9.1.

We can now briefly return to the discussion about better (or stronger) formulations for integer
programming problems. Stronger formulations are characterised by those that wield stronger
relaxations, or, specifically, that yield relaxations that are guaranteed to provide better (or tighter)
dual bounds. This is formalised in Proposition 9.5.

Proposition 9.5. Let P1 and P2 be formulations of the integer programming problem

min.
x

{
c⊤x : x ∈ X

}
with X = P1 ∩ Zn = P2 ∩ Zn.

Assume P1 is a better formulation than P2 (i.e., P1 ⊂ P2). Let ziLP = min.
{
c⊤x : x ∈ Pi

}
for

i = 1, 2. Then z1LP ≥ z2LP for any cost vector c.

Proof. Apply Proposition 9.2 by noticing that P2 is a relaxation of P1.
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x0
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Figure 9.1: The feasible region of the example (represented by the blue dots) and the solution of
the LP relaxation, with objective function value zLP = 8.42

9.2.2 Relaxation for combinatorial optimisation

There is another important type of relaxation that is often exploited in the context of combinatorial
optimisation. Specifically, a relaxation for a combinatorial optimisation problem that is also a
combinatorial optimisation problem is called a combinatorial relaxation.

Efficient algorithms are known for some combinatorial optimisation problems, and this can be
exploited in a solution method for a problem to which the combinatorial relaxation happens to be
one of such problems.

Let us illustrate the concept with a couple of examples. Consider the travelling salesperson problem
(TSP). Recall that, without considering the tour elimination constraints, we recover the assignment
problem. It so turns out that the assignment problem can be solved efficiently (for example, using
the Hungarian method) and thus can be used as a relaxation for the TSP, i.e.,

zTSP =min.
T⊆A




∑

(i,j)∈T

cij : T forms a tour



 ≥

zAP =min.
T⊆A




∑

(i,j)∈T

cij : T forms an assignment



 .

Still relating to the TSP, one can obtain even stronger combinatorial relaxations using 1-trees for
symmetric TSP. Let us first define some elements. Consider an undirected graph G = (V,E) with
edge (or arcs) weights ce for e ∈ E. The objective is to find a minimum weight tour.

Now, notice the following: (i) a tour contains exactly two edges adjacent to the origin node (say,
node 1) and a path through nodes {2, . . . , |V |}; (ii) a tour is a special case of a (spanning) tree,
which is any subset of edges that covers (or touch at least once) all nodes v ∈ V .

We can now define what is a 1-tree. A 1-tree is a subgraph consisting of two edges adjacent to
node 1 plus the edges of a tree on nodes {2, . . . , |V |}. Clearly, every tour is a 1-tree with the
additional requirement (or constraint) that every node has exactly two incident edges. Thus, the
problem of finding minimal 1-trees is a relaxation for the problem of finding optimal tours. Figure
9.2 illustrates a 1-tree for an instance with eight nodes.

Once again, it so turns out that several efficient algorithms are known for forming minimal spanning
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edges of a tree on nodes {2, . . . , 8}. 2 edges from node 1.

Figure 9.2: An example of a 1-tree considering eight nodes

trees, which can be efficiently utilised as a relaxation for the symmetric TSP, that is

zSTSP =min.
T⊆E

{∑

e∈T

ce : T forms a tour

}
≥

z1−TREE =min.
T⊆E

{∑

e∈T

ce : T forms a 1-tree

}
.

9.3 Branch-and-bound method

Relaxations play a major role in solving mixed-integer programming and/or combinatorial optimi-
sation problems. However, they are only part of the framework (specifically, the bounding part of
the branch-and-bound method). One still needs to be able to, from the solution of said relaxations,
be able to construct a solution to the original problem.

Branch-and-bound is an algorithmic strategy that is far broader than mathematical programming
and optimisation. In essence, it consists of a divide-and-conquer strategy, in which we first break an
original problem into smaller and manageable (or solvable) parts and then recombine the solution
of these parts into a solution for the original problem.

Specifically, let

(P ) : z = max.
x

{
c⊤x : x ∈ S

}
.

The working principle behind this strategy is based on the principle formalised in Proposition 9.6.

Proposition 9.6. Let K = {1, . . . , |K|} and
⋃

k∈K Sk = S be a decomposition of S. Let zk =

max. x

{
c⊤x : x ∈ Sk

}
,∀k ∈ K. Then

z = max
k∈K

{
zk
}
.

Notice the use of the word decomposition in Proposition 9.6. Indeed, the principle is philosophically
the same, and this connection will be exploited in later chapters when we discuss in more detail
the available technology for solving mixed-integer programming problems.

Now, one challenging aspect related to divide-and-conquer approaches is that, in order to be able
to find a solution, one might need to repeat several times the strategy based on Proposition 9.6,
which suggests breaking any given problem in multiple subproblems. This leads to a multi-layered
collection of subproblems that must have their relationships managed. To address this issue, such
methods typically rely on tree structures called enumerative trees, which are simply a representation
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that allows for keeping track of the relationship (represented by branches) between subproblems
(represented by nodes).

Figure 9.3 represents an enumerative tree for a generic problem S ⊆ {0, 1}3 in which one must
define the value of a three-dimensional binary variable. The subproblems are formed by, at each
level, fixing one of the components to zero or one, forming then two subproblems. Any strategy to
form subproblems that generate two subproblems (or children) is called a binary branching.

S

S0

S00

S000 S001

S01

S010 S011

S1

S10

S100 S101

S11

S110 S111

Figure 9.3: A enumeration tree using binary branching for a problem with three binary variables

Specifically, notice that, at the highest level, we have

S = S0 ∪ S1 = {x ∈ S : x1 = 0} ∪ {x ∈ S : x1 = 1} ,

which renders two subproblems. Then, each subproblem is again decomposed each into two chil-
dren, such that

Si = Si0 ∪ Si1 = {x ∈ S : x1 = i, x2 = 0} ∪ {x ∈ S : x1 = i, x2 = 1} .

Finally, once all of the variables are fixed, we arrive at what is called the leaves of the tree. These
are such that they cannot be further divided, since they immediately yield a candidate solution
for the original problem.

Sij = Sij0 ∪ Sij1 = {x ∈ S : x1 = i, x2 = j, x3 = 0} ∪ {x ∈ S : x1 = i, x2 = j, x3 = 1}

Notice that applying Proposition 9.6, we can recover an optimal solution to the problem.

9.3.1 Bounding in enumerative trees

As you may suspect, the strategy of enumerating all possible solutions will quickly become compu-
tationally intractable and will most likely not be feasible for mixed-integer programming problems,
or any relevant combinatorial optimisation for that matter. That is precisely when the notion of
bounding comes to the spotlight: by possessing bound information on our original problem, we
might be able to dismiss branches (or prune, in keeping with our tree analogy) from being searched,
and hopefully find a solution without the need to exhaustively explore the enumeration tree.

The main principle behind the pruning of branches in enumerative search trees is summarised in
Proposition 9.7.

Proposition 9.7. Consider the problem P and let S =
⋃

k∈K Sk be a decomposition of S into

smaller sets. Let zk = max. x

{
c⊤x : x ∈ Sk

}
for k ∈ K, and let zk (zk) be an upper (lower) bound

on zk. Then z = maxk∈K

{
zk
}
and z = maxk∈K

{
zk
}
.
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First, notice tat P is a maximisation problem, for which an upper bound is a dual bound, ob-
tained from a relaxation, and a lower bound is a primal bound, obtained from a feasible solution.
Proposition 9.7 states that the best known primal (lower) bound can be applied globally to all of
the subproblems Sk, k ∈ K. On the other hand, dual (upper) bounds can only be considered valid
locally, since only the worst of the upper bounds can be guaranteed to hold globally.

Pruning branches is made possible by combining relaxations and global primal bounds. If, at any
moment of the search, the solution of a relaxation of Sk is observed to be worse than a known
global primal bound, then any further branching from that point onwards would be fruitless, since
no solution found from that subproblem could be better than the relaxation for Sk. Specifically,
we have that

z ≥ zk ≥ zk′ , ∀k′ that is descendent of k.

9.3.2 Linear-programming-based branch-and-bound

Branch-and-bound is the general nomenclature given to methods that operate based on solving
relaxations of subproblems and using bounding information to preemptively prune branches in the
enumerative search tree.

The characteristics that define a branch-and-bound method are thus the relaxation being solved (or
how bounding is performed), and how subproblems are generated (how branching is performed).
In the specific context of (mixed-)integer programming problems, bounding is performed utilising
linear programming (LP) relaxations.

In regards to branching, we employ the following strategy utilising the information from the solution
of the LP relaxation. At a given subproblem Sk, suppose we have an optimal solution with a
fractional component x∗kj = xj /∈ Z1. We can then branch Sk into the following subproblems:

Sk1 = Sk ∩ {x : xj ≤ ⌊xj⌋} and Sk2 = Sk ∩ {x : xj ≥ ⌈xj⌉} .

Notice that this implies that each of the subproblems will be disjunct (i.e., with no intersection)
and have one additional constraint that eliminates the fractional part of the component around
the solution of the LP relaxation.

Bounding can occur in three distinct ways. The first case is when the solution of the LP relaxation
happens to be integer and, therefore, optimal for the subproblem itself. In this case, no further
exploration along that subproblem is necessary and we say that the node has been pruned by
optimality.

Figure 9.4 illustrates the process of pruning by optimality (in a maximisation problem). Each box
denotes a subproblem, with the interval denoting known lower (primal) and upper (dual) bounds
for the problem and x denoting the solution for the LP relaxation of the subproblem. In Figure 9.4,
we see a pruning that is caused because a solution to the original (integer) subproblem has been
identified by solving its (LP) relaxation, akin to the leaves in the enumerative tree represented in
Figure 9.3. This can be concluded because the solution of the LP relaxation of subproblem S1 is
integer.

Another type of pruning takes place when known global (primal) bounds can be used to prevent
further exploration of a branch in the enumeration tree. Continuing the example in Figure 9.4,
notice that the global lower (primal) bound z = 11 becomes available and can be transmitted to
all subproblems. Now suppose we solve the LP relaxation of S2 and obtain the optimal value of
z2 = 9.7. Notice that we are precisely in the situation described in Section 9.3.1. That is, the nodes
descending from S2 (i.e., their descendants) can only yield solutions that have objective function
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S : [−, 13.4]
x = (3, 2.7)

S1 : [?, ?]

x2 ≤ 2

S2 : [?, ?]

x2 ≥ 3

solve S1

S : [−, 13.4]
x = (3, 2.7)

S1 : [11, 11]
x = (2, 2)

x2 ≤ 2

S2 : [?, ?]
x = (?, ?)

x2 ≥ 3

Figure 9.4: An example of pruning by optimality. Since the solution of LP relaxation of subproblem
S1 is integer, x = (2, 2) must be optimal for S1

value worse than the dual bound of S2, which, in turn, is worse than a known global primal (lower)
bound. Thus, any further exploration among the descendants of S2 would be fruitless in terms of
yielding better solutions and can be pruned. This is known as pruning by bound, and is illustrated
in Figure 9.5.

S : [11, 13.4]
x = (3, 2.7)

S1 : [11, 11]
x = (2, 2)

x2 ≤ 2

S2 : [11, ?]
x = (?, ?)

x2 ≥ 3

solve S2

S : [11, 13.4]
x = (3, 2.7)

S1 : [11, 11]
x = (2, 2)

x2 ≤ 2

S2 : [11, 9.7]
x = (1.5, 3)

x2 ≥ 3

Figure 9.5: An example of pruning by bound. Notice that the newly found global bound holds for
all subproblems. After solving the LP relaxation of S2, we notice that z2 ≤ z, which renders the
pruning.

The third type of pruning is called pruning by infeasibility, which takes place whenever the branch-
ing constraint added to the subproblem renders its relaxation infeasible, implying that the sub-
problem itself is infeasible (cf. Proposition 9.3)

Algorithm 5 presents a pseudocode for an LP-based branch-and-bound method. Notice that the
algorithm keeps a list L of subproblems to be solved and requires that a certain rule to select
which subproblem is solved next to be employed. This subproblem selection (often referred to as
search strategy) can have considerable impacts on the performance of the method. Similarly, in
case multiple components are found to be fractional, one must be chosen. Defining such branching
priorities also has consequences to performance. We will discuss these in more depth in Chapter
11.

Also, recall that we have seen how to efficiently resolve a linear programming problem from an
optimal basis once we include an additional constraint (in Chapter 6). It so turns out that an
efficient dual simplex method is the kingpin of an efficient branch-and-bound method for (mixed)-
integer programming problems.

Finally, although we developed the method in the context of integer programming problems, the
method can be readily applied to mixed-integer programming problems, with the only difference
being that the branch-and-bound steps are only applied to the integer variables while the continuous
variables are naturally taken care of in the solution of the LP relaxations.

Let us finalise presenting a numerical example of the employment of branch-and-bound method to
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Algorithm 5 LP-relaxation-based branch-and-bound

1: initialise. L ← {S}, z ← −∞, x← −∞
2: while L ≠ ∅ do
3: select problem Si from L. L ← L \ {Si}.
4: solve LP relaxation of Si over Pi, obtaining z

i
LP and xiLP . z

i ← ziLP .
5: if Si = ∅ then return to step 2.
6: else if zi ≤ z then return to step 2.
7: else if xiLP ∈ Zn then z ← max

{
z, zi

}
, x← xiLP ; and return to step 2

8: end if
9: select a fractional component xj and create subproblems Si1 and Si2 with formulations Pi1

and Pi2, respectively, such that

Pi1 = Pi ∪ {xj ≤ ⌊xj⌋} and Pi2 = Pi ∪ {xj ≥ ⌈xj⌉} .

10: L ← L ∪ {Si1, Si2}.
11: end while
12: return (x, z).

solve an integer programming problem. Consider the problem:

max.
x

z = 4x1 − x2
s.t.: 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2
+.

We start by solving its LP relaxation, as represented in Figure 9.6. We obtain the solution xLP =
(20/7, 3) with objective value of z = 59/7. As the first component of x is fractional, we can
generate subproblems by branching the node into subproblems S1 and S2, where

S1 = S ∩ {x : x1 ≤ 2}
S2 = S ∩ {x : x1 ≥ 3} .

The current enumerative (or branch-and-bound) tree representation is depicted in Figure 9.7.
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x2

x0
LP

Figure 9.6: LP relaxation of the problem S
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S
[−, 59/7]
(20/7, 3)

S1

[−,−]

x1 ≤ 2

S2

[−,−]

x1 ≥ 3

Figure 9.7: The branch-and-bound tree after branching S onto S1 and S2

Suppose we arbitrarily choose to solve the relaxation of S1 next. Notice that this subproblem
consists of the problem S, with the added constraint x1 ≤ 2. The feasible region and solution of
the LP relaxation of S2 is depicted in Figure 9.8. Since we again obtain a new fractional solution
x1LP = (2, 1/2), we must branch on the second component, forming the subproblems

S11 = S1 ∩ {x : x2 = 0}
S12 = S1 ∩ {x : x2 ≥ 1} .

0 1 2 3 4

0

1

2

3

4

x1

x2

x0
LP

x1
LP

Figure 9.8: LP relaxation of subproblem S1

Notice that, at this point, our list of active subproblems is formed by L = {S1, S11, S12}. Our
current branch-and-bound tree is represented in Figure 9.9.

Suppose we arbitrarily choose to first solve S2. One can see that this would render an infeasible
subproblem, since the constraint x2 ≥ 3 does not intersect with the original feasible region and,
thus, S2 can be pruned by infeasibility.

Next, we choose to solve the LP relaxation of S12, which yields an integer solution x12LP = (2, 1).
Therefore, an optimal solution for S12 was found, meaning that a global primal (lower) bound
has been found and can be propagated to the whole branch-and-bound tree. Solving S11 next, we
obtain the solution x11LP = (3/2, 0) with optimal value z = 6. Since a better global primal (lower)
bound is known, we can prune S11 by bound. As there are no further nodes to be explored, the
solution for the original problem is the best (and, in this case, the single) integer solution found
in the process (cf. Proposition 9.6), x∗ = (2, 1), z∗ = 7. Figure 9.10 illustrates the feasible region
of the subproblems and their respective optimal solutions, while Figure 9.11 presents the final
branch-and-bound tree with all branches pruned.
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S
[−, 59/7]
(20/7, 3)

S1

[−, 15/2]
(2, 1/2)

S11

[−,−]

x2 = 0

S12

[−,−]

x2 ≥ 1

x1 ≤ 2

S2

[−,−]

x1 ≥ 3

Figure 9.9: The branch-and-bound tree after branching S1 onto S11 and S12
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Figure 9.10: LP relaxations of all subproblems. Notice that S11 and S12 includes the constraints
x1 ≤ 2 from the parent node S1

S
[7, 59/7]
(20/7, 3)

S1

[7, 15/2]
(2, 1/2)

S11

[7, 6]
-

x2 = 0
S12

[7, 7]
(2, 1)

x1 ≥ 1

x1 ≤ 2

S2

[7,−∞]
-

x1 ≥ 3

Figure 9.11: The final branch-and-bound tree

Notice that in this example, the order in which we solved the subproblems was crucial for pruning
by bound the subproblem S11, only possible because we happened to solve the LP relaxation of S12

first and that happened to yield a feasible solution and associated primal bound. This illustrates
an important aspect associated with the branch and bound method: having good feasible solutions
available early on in the process increases the likelihood of performing more pruning by bound,
which is highly desirable in terms of computational savings (and thus, performance). We will
discuss in more detail the impacts of different search strategies later on when we consider this and
other aspects involved in the implementation of mixed-integer programming solvers.
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9.4 Exercises

Problem 9.1: Uncapacitated Facility Location (UFL)

(a) Let N = {1, . . . , n} be a set of potential facilities and M = {1, . . . ,m} a set of clients. Let
yj = 1 if facility j is opened, and yj = 0 otherwise. Moreover, let xij be the fraction of client i’s
demand satisfied from facility j. The UFL can be formulated as the mixed-integer problem:

(UFL-W) : min.
x,y

∑

j∈N

fjyj +
∑

i∈M

∑

j∈N

cijxij (9.1)

s.t.:
∑

j∈N

xij = 1, ∀i ∈M, (9.2)

∑

i∈M

xij ≤ myj , ∀j ∈ N, (9.3)

xij ≥ 0, ∀i ∈M,∀j ∈ N, (9.4)

yj ∈ {0, 1}, ∀j ∈ N, (9.5)

where fj is the cost of opening facility j, and cij is the cost of satisfying client i’s demand from
facility j. Consider an instance of the UFL with opening costs f = (4, 3, 4, 4, 7) and client costs

(cij) =




12 13 6 0 1

8 4 9 1 2

2 6 6 0 1

3 5 2 1 8

8 0 5 10 8

2 0 3 4 1




Implement (the model) and solve the problem with Julia using JuMP.

(b) An alternative formulation of the UFL is of the form

(UFL-S) : min.
x,y

∑

j∈N

fjyj +
∑

i∈M

∑

j∈N

cijxij (9.6)

s.t.:
∑

j∈N

xij = 1, ∀i ∈M, (9.7)

xij ≤ yj , ∀i ∈M,∀j ∈ N, (9.8)

xij ≥ 0, ∀i ∈M,∀j ∈ N, (9.9)

yj ∈ {0, 1}, ∀j ∈ N. (9.10)

Linear programming (LP) relaxations of these problems can be obtained by relaxing the binary
constraints yj ∈ {0, 1} to 0 ≤ yj ≤ 1 for all j ∈ N . For the same instance as in part (a), solve the
LP relaxations of UFL-W and UFL-S and compare the optimal costs of the LP relaxations against
the optimal integer cost obtained in part (a).
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Problem 9.2: LP-based branch-and-bound method

Consider the following IP problem and its standard form

(IP) z = max 4x1 − x2
s.t.: 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ∈ Z+

(IP) z = max 4x1 − x2
s.t.: 7x1 + 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3

x1, . . . , x5 ∈ Z+

Solve the IP problem by LP-based branch and bound, i.e., use LP relaxations to compute dual
(upper) bounds. Use dual simplex to efficiently solve the subproblem of each node starting from
the optimal basis of the previous node. Recall that the LP relaxation of IP is obtained by relaxing
the variables x1, . . . , x5 ∈ Z+ to x1, . . . , x5 ≥ 0.

Hint: The initial dual bound z is obtained by solving the LP relaxation of IP at the root node
S. Let [z, z] be the lower and upper bounds of each node. The optimal tableau and the initial
branch-and-bound tree with only the root node S are shown below.

-z x1 x2 x3 x4 x5

-59/7 0 0 -4/7 -1/7 0

x1 = 20/7 1 0 1/7 2/7 0

x2 = 3 0 1 0 1 0

x5 = 23/7 0 0 -2/7 10/7 1
S

z = 59/7

z = −∞

You can proceed by branching on the fractional variable x1 and imposing either x1 ≤ 2 or x ≥ 3.
This creates two new subproblems S1 = S ∩ {x1 ≤ 2} and S2 = S ∩ {x1 ≥ 3} in the branch-and-
bound tree that can be solved efficiently using the dual simplex method, starting from the optimal
tableau of S shown above, by first adding the new constraint x1 ≤ 2 for S1 or x1 ≥ 3 for S2 to
the optimal tableau. The dual simplex method can be applied immediately if the new constraint
is always written in terms of non-basic variables before adding it to the tableau as a new row,
possibly multiplying the constraint by −1 if needed.

Problem 9.3: Employing the branch-and-bound method graphically

Consider the following integer programming problem IP :

(IP ) : max. z = x1 + 2x2

s.t.: − 3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

x1, x2 ∈ Z+

Plot (or draw) the feasible region of the linear programming (LP) relaxation of the problem IP ,
then solve the problems using the figure. Recall that the LP relaxation of IP is obtained by
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replacing the integrality constraints x1, x2 ∈ Z+ by linear nonnegativity x1, x2 ≥ 0 and upper
bounds corresponding to the upper bounds of the integer variables (x1, x2 ≤ 1 for binary variables).

(a) What is the optimal cost zLP of the LP relaxation of the problem IP? What is the optimal
cost z of the problem IP?

(b) Draw the border of the convex hull of the feasible solutions of the problem IP . Recall that
the convex hull represents the ideal formulation for the problem IP .

(c) Solve the problem IP by LP-relaxation based branch-and-bound. You can solve the LP
relaxations at each node of the branch-and-bound tree graphically. Start the branch-and-
bound procedure without any primal bound.



Chapter 10

Cutting-planes Method

10.1 Valid inequalities

In this chapter, we will discuss the idea of generating and adding constraints to improve a formu-
lation of a (possibly mixed-)integer programming problem. This idea can either be implemented
in a priori setting, for example before employing the branch-and-bound method or as the solution
method itself. These constraints are often called valid inequalities or cuts, though the latter is
typically used in the context of cutting-plane methods.

Let us start by defining the integer programming problem

(IP ) : max.
x

{
c⊤x : x ∈ X

}

where X = P ∩ Zn and P = {x ∈ Rn : Ax ≤ b, x ≥ 0}, with A ∈ Rm×n and b ∈ Rm.

The idea of using constraints to solve IP is founded in the following observations. We know that
conv(X) is a (convex) polyhedral set (cf. Definition 2.7) and, being so, there exists a finite set of
inequalities Ãx ≤ b̃ such that

conv(X) =
{
x ∈ Rn : Ãx ≤ b̃, x ≥ 0

}
.

Furthermore, if we had available Ãx ≤ b̃, then we could solve IP by solving its linear programming
relaxation.

Cutting-plane methods are based on the idea of iteratively approximating the set of inequalities
Ãx ≤ b̃ by adding constraints to the formulation P of IP . These constraints are called valid
inequalities, a term we define more precisely in Definition 10.1.

Definition 10.1 (Valid inequality). An inequality π⊤x ≤ π0 is valid for X ⊂ Rn if π⊤x ≤ π0 for
all x ∈ X.

Notice that the condition for an inequality to be valid is that it does not remove any of the point
in the original integer set X. In light of the idea of gradually approximating conv(X), one can
infer that good valid inequalities are those that can “cut off” some of the area defined by the
polyhedral set P , but without removing any of the points in X. This is precisely where the name
cut comes from. Figure 10.1 illustrates the process of adding a valid inequality to a formulation
P . Notice how the inequality exposes one of the facets of the convex hull of X. Cuts like such are
called “facet-defining” and are the strongest types of cuts one can generate. We will postpone the
discussion of stronger cuts to later in this chapter.

155
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Figure 10.1: Illustration of a valid inequality being added to a formulation P . Notice how the
inequality cuts off a portion of the polyhedral set P while not removing any of the feasible points
X (represented by the dots)

10.2 The Chvátal-Gomory procedure

To develop a systematic procedure for generating valid inequalities in the context of a solution
method for integer programming problems, we will rely on a two-step procedure. First, a cut that
is valid for the polyhedral set P is (somewhat automatically) generated, and then it is made valid
for the integer set X by a simple rounding procedure. Before we proceed, let us define the notion
of valid inequalities in the context of linear programming problems.

Proposition 10.2 (Valid inequalities for polyhedral sets). An inequality π⊤x ≤ π0 is valid for
P = {x ∈ Rn : Ax ≤ b, x ≥ 0}, if and only if P ̸= ∅ and there exists u ≥ 0 such that u⊤A ≥ π and
u⊤b ≤ π0.

Proof. First, notice that, for u ≥ 0 and x ∈ P , we have

Ax ≤ b
u⊤Ax ≤ u⊤b

π⊤x ≤ u⊤Ax ≤ u⊤b ≤ π0,

and, thus, it implies the validity of the cut, i.e., that π⊤x ≤ π0,∀x ∈ P . Now, let us consider the
other direction, which we can use linear programming duality to show. First, consider the primal
problem

max. π⊤x

s.t.: Ax ≤ b
x ≥ 0

and its dual

min. u⊤b

s.t.: u⊤A ≥ π
u ≥ 0.
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Notice that u⊤A ≥ π can be seen as a consequence of dual feasibility, which is guaranteed to hold
for some u since π⊤x is bounded. Then, strong duality gives u⊤b = π⊤x ≤ π0, which completes
the proof.

One thing to notice is that valid cuts in the context of polyhedral sets are somewhat redundant,
since, by definition, they do not alter the polyhedral set by any means. However, the concept can
be combined with a simple yet powerful way of generating valid inequalities for integer sets by
using rounding. This is stated in Proposition 10.3.

Proposition 10.3 (Valid inequalities for integer sets). Let X =
{
y ∈ Z1 : y ≤ b

}
. The inequality

y ≤ ⌊b⌋ is valid for X.

The proof of Proposition 10.3 is somewhat straightforward and left as a thought exercise.

We can combine Propositions 10.2 and 10.3 into a single procedure to automatically generate valid
inequalities. Let us start with a numerical example. Consider the set X = P ∩ Zn where P is
defined by

P =
{
x ∈ R2

+ : 7x1 − 2x2 ≤ 14, x2 ≤ 3, 2x1 − 2x2 ≤ 3
}
.

First, let u =
[
2
7 ,

37
63 , 0

]
, which, for now, we can assume that they were arbitrarily chosen. We

can then combine the constraints in P (the Ax ≤ b in Proposition 10.2) forming the constraint
(equivalent to u⊤Ax ≤ u⊤b)

2x1 +
1

63
x2 ≤

121

21
.

Now, notice that the constraint would remain valid for P if we simply round down the coefficients
on the left-hand side (as x ≥ 0 and all coefficients are positive). This would lead to the new
constraint (notice that this yields a vector π in Proposition 10.2)

2x1 + 0x2 ≤
121

21
.

Finally, we can invoke Proposition 10.3 to generate a cut valid for X. This can be achieved by
simply rounding down the righthand side (yielding π0), obtaining

2x1 + 0x2 ≤ 5,

which is valid for X, but not for P . Notice that, apart from the vector of weights u used to
combine the constraints, everything else in the procedure of generating the valid inequality for X
is automated. This procedure is known as the Chvátal-gomory procedure and can be formalised as
follows.

Definition 10.4 (Chvátal-Gomory procedure). Consider the integer set X = P ∩ Zn where
P =

{
x ∈ Rn

+ : Ax ≤ b
}
, A is an m× n matrix with columns {A1, . . . , An} and u ∈ Rm

+ .

The Chvátal-Gomory procedure consists of the following set of steps to generate valid inequalities
for X:

1.
∑n

j=1 u
⊤Ajxj ≤ u⊤b is valid for P as u ≥ 0;

2.
∑n

j=1⌊u⊤Aj⌋xj ≤ u⊤b is valid for P as x ≥ 0;

3.
∑n

j=1⌊u⊤Aj⌋xj ≤ ⌊u⊤b⌋ is valid for X as ⌊u⊤b⌋ is integer.
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Perhaps the most striking result in the theory of integer programming is that every valid inequality
for an integer set X can be obtained by employing the Chvátal-gomory procedure a number of
times. This is formalised in Theorem 10.5, which has its proof provided as an exercise (see Exercise
10.1).

Theorem 10.5. Every valid inequality for X can be obtained by applying the Chvátal-Gomory
procedure a finite number of times.

10.3 The cutting-plane method

Let us now consider how one could use valid inequalities to devise a solution method. The working
paradigm behind a cutting-plane method is the separation principle.

The separation principle states that, given an integer set X = P ∩ Zn, if a solution x /∈ X, then
there exists a hyperplane π⊤x ≤ π0 separating x and X1. As one might infer, the challenge is how
one can generate such pairs (π, π0). This is precisely what is called the separation problem, in the
context of integer programming.

In general, these valid inequalities are generated from a family of inequalities F , which are related
to each other by properties related to, e.g., problem structure or the nature of the inequality itself.
One way of thinking about it is to see the family of inequalities F as a means to dictate, to some
extent, how the selection of weights u in the Chvátal-Gomory procedure is defined.

In any case, in possession of a family of inequalities and a method to solve the separation problem,
we can pose a cutting-plane method in general terms. This is stated in Algorithm 6.

Algorithm 6 Cutting-plane algorithm

1: initialise. let F ⊆
{
(π, π0) : π

⊤x ≤ π0 is valid for X
}
. k = 0.

2: while xkLP /∈ Zn do
3: solve the LP relaxation over P , obtaining the optimal objective value zkLP and optimal

solution xkLP .

4: if xkLP /∈ Zn then find (πk, πk
0 ) ∈ F such that πk⊤xkLP > πk

0 .
5: else
6: return (xkLP , z

k
LP ).

7: end if
8: P ← P ∪

{
πk⊤x ≤ πk

0

}
. k = k + 1.

9: end while
10: return (xkLP , z

k
LP ).

The motivation for employing cutting-plane algorithms lies in the belief that only a few of all |F|
inequalities (assuming F is finite, which might not be necessarily the case) is necessary, circum-
venting the computationally prohibitive need of generating all possible inequalities from F .
Some other complicating aspects must be observed when dealing with cutting-plane algorithms.
First, it might be so that a given family of valid inequalities F is not sufficient to expose the optimal
solution x ∈ X, which might be the case, for example, if F cannot fully describe conv(X) or if
the separation problem is unsolvable. In that case, the algorithm will terminate with a solution
for the LP relaxation that is not integer, i.e., xkLP /∈ Zn.

1the separation principle is a consequence of the separation theorem (Theorem 14.11) in Part II.
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However, failing to converge to an integer solution is not a complete failure since, in the process,
we have improved the formulation P (cf. Definition 8.3). In fact, this idea plays a major role in
professional-grade implementations of mixed-integer programming solvers, as we will see later.

10.4 Gomory’s fractional cutting-plane method

One important cutting-plane method that is guaranteed to converge (in theory) to an integer solu-
tion is Gomory’s fractional cutting-plane method. The method consists of exploiting the Chvátal-
Gomory procedure (cf. Definition 10.4) to be the family of cuts generated while solving separation
problem becomes simply the process of rounding to be applied to solutions of LP relaxations.

Specifically, consider the integer programming problem

(IP ) : max.
x

{
c⊤x : x ∈ X

}
,

where X =
{
x ∈ Zn

+ : Ax = b
}
. Recall that the optimal solution of the LP relaxation is charac-

terised by a basis B formed by columns of the matrix A, i.e.,

A = [B | N ] and x = (xB , xN ),

where xB are the basic components of the solution and xN = 0 the nonbasic components. The
matrix N if formed by columns of A associated with the nonbasic variables xN .

As we have discussed in Chapter 3, the system of equation Ax = b can be written as

BxB +NxN = b or xB +B−1NxN = B−1b,

which is equivalent to B−1Ax = B−1b. Now, let aij be the element in row i and column j in
B−1A, and let ai0 = (B−1b)i be the i-th component of B−1b. With that, we can represent the set
of feasible solutions X as

xB(i) +
∑

j∈IN

aijxj = ai0, ∀i ∈ I

xj ∈ Z+, ∀j ∈ J,
where I = {1, . . . ,m}, J = {1, . . . , n}, IB ⊂ J are the indices of basic variables and IN = J \ IB
the indices of nonbasic variables. Notice that, at this point, we are simply recasting the problem
IP by performing permutations of columns, since basic feasible solutions for the LP relaxation do
not necessarily translate into a feasible solution for X.

However, assuming that we solve the LP relaxation of the integer programming problem P and
obtain an optimal solution x = (xB , xN ) with associated optimal basis B. If x is fractional, then
it means that ai0 is fractional for some i.

From any of the rows i with fractional ai0, we can derive a valid inequality using the Chavátal-
Gomory procedure. These inequalities, commonly referred to as CG cuts, take the form

xB(i) +
∑

j∈IN

⌊aij⌋xj ≤ ⌊ai0⌋. (10.1)

As this is thought to be used in conjunction with the simplex method, we must be able to state
(10.1) in terms of the nonbasic variables xj , ∀j ∈ IN . To do so, we can replace xB(i) = ai0 −∑

j∈IN
aijxj , obtaining ∑

j∈IN

(aij − ⌊aij⌋)xj ≥ (ai0 − ⌊ai0⌋),
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which, by defining fij = aij − ⌊aij⌋, can be written in the more conventional form

∑

j∈IN

fijxj ≥ fi0. (10.2)

In the form of (10.2), this inequality is referred to as the Gomory (fractional) cut.

Notice that the inequality (10.2) is not satisfied by the optimal solution of the LP relaxation, since
xj = 0,∀j ∈ IN and fi0 > 0. Therefore, this indicates that a cutting-plane method using this idea
benefits from the employment of dual simplex, in line with the discussion in Section 6.1.2.

Let us present a numerical example illustrating the employment of Gomory’s fractional cutting
plane algorithm for solving the following integer programming problem

z = max.
x

4x1 − x2
s.t.: 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ∈ Z+.

Figure 10.2 illustrates the feasible region of the problem and indicates the solution of its LP
relaxation. Considering the tableau representation of the optimal basis for the LP relaxation, we
have

x1 x2 x3 x4 x5 RHS

0 0 -4/7 -1/7 0 59/7

1 0 1/7 2/7 0 20/7

0 1 0 1 0 3

0 0 -2/7 10/7 1 23/7

Notice that the tableau indicates that the component x1 in the optimal solution is fractional. Thus,
we can choose that row to generate a Gomory cut. This will lead to the new constraint (with added
respective slack variable s ≥ 0.

1

7
x3 +

2

7
x4 − s =

6

7
.

We can proceed to add this new constraint to the problem, effectively adding an additional row
to the tableau. After multiplying it by -1 (so we have s as a basic variable complementing the
augmented basis), we obtain the new tableau

x1 x2 x3 x4 x5 s RHS

0 0 -4/7 -1/7 0 0 59/7

1 0 1/7 2/7 0 0 20/7

0 1 0 1 0 0 3

0 0 -2/7 10/7 1 0 23/7

0 0 -1/7 -2/7 0 1 -6/7

Notice that the solution remains dual feasible, which indicates the suitability of the dual simplex
method. Applying the dual simplex method leads to the optimal tableau
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x1 x2 x3 x4 x5 s RHS

0 0 0 0 -1/2 -3 15/2

1 0 0 0 0 1 2

0 1 0 0 -1/2 1 1/2

0 0 1 0 -1 -5 1

0 0 0 1 1/2 -1 5/2

Notice that we still have a fractional component, this time associated with x2. We proceed in
an analogous fashion, first generating the Gomory cut and adding the slack variable t ≥ 0, thus
obtaining

1

2
x5 − t =

1

2
.

Then, adding it to the previous tableau and employing the dual simplex again, leads to the optimal
tableau

x1 x2 x3 x4 x5 s t RHS

0 0 0 0 0 -4 -1 7

1 0 0 0 0 1 0 2

0 1 0 0 0 0 -1 1

0 0 1 0 0 -7 -2 2

0 0 0 1 0 0 1 2

0 0 0 0 1 -2 -2 1

Notice that now all variables are integer, and thus, an optimal solution for the original integer
programming problem was found.

Some points are worth noticing. First, notice that, at the optimum, all variables, including the
slacks, are integer. This is a consequence of having the Gomory cuts active at the optimal solution
since (10.1), and consequently, (10.2), have both the left- and right-hand sides integer. Also, notice
that at each iteration the problem increases in size, due to the new constraint being added, which
implies that the basis also increases in size. Though this is an issue also in the branch-and-bound
method, it can be a more prominent computational issue in the context of cutting-plane methods.

We can also interpret the progress of the algorithm in graphical terms. First of all, notice that
we can express the cuts in terms of the original variables (x1, x2) by noticing that the original
formulation gives x3 = 14 − 7x1 + x2 and x4 = 3 − x2. Substituting x3 and x4 in the cut
1
7x3 +

2
7x4 − s = 6

7 gives x1 ≤ 2. More generally, we have that cuts can be expressed using the
original problem variables, as stated in Proposition 10.6.

Proposition 10.6. Let β be the row l of B−1 selected to generate the cut, and let qi = βi − ⌊βi⌋,
i ∈ {1, . . . ,m}. Then the cut

∑
j∈IN

fljxj ≥ fl0, written in terms of the original variables, is the
Chvátal-Gomory inequality

n∑

j=1

⌊qAj⌋xj ≤ ⌊qb⌋.
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Figure 10.2: Feasible region of the LP relaxation (polyhedral set) and of the integer programming
problem (blue dots) at each of three iterations taken to solve the integer programming problem.
The inequalities in orange represent the Gomory cut added at each iteration

10.5 Obtaining stronger inequalities

We finalise this chapter by discussing the notion of strong inequalities and providing an example
of how they can be made stronger in some cases by means of an external process.

10.5.1 Strong inequalities

The notion of strong inequalities arises from the notion of stronger formulations, cf. Definition 8.3.
That is, we say that an inequality is strong in terms of its relative quality in describing the convex
hull of the integer set.

However, in this context, we are interested in comparing two alternative inequalities to decide
which is stronger. For that, we can rely on the notions of dominance and related redundancy of
inequalities.

Consider two valid inequalities πx ≤ π0 and µx ≤ µ0 that are valid for a polyhedral set P ={
x ∈ Rn

+ : Ax ≤ b
}
. Definition 10.7 formalises the notion of dominance.

Definition 10.7 (Dominance). The inequality πx ≤ π0 dominates µx ≤ µ0 if these exists u > 0
such that π ≥ uµ, π0 ≤ uµ0, and (π, π0) ̸= (uµ, uµ0).

Let us illustrate the concept of dominance with a numerical example. Consider the inequalities
2x1 + 4x2 ≤ 9 and x1 + 3x2 ≤ 4, which are valid for P = conv(X), where

X = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)} .

Notice that, if we consider u = 1/2, we have that, for any x = (x1, x2), that 1x1 + 3x2 ≥
u(2x1 + 4x2) = x1 + 2x2 and that 4 ≤ 9u = 9/2. Thus, we say that x1 + 3x2 ≤ 4 dominates
2x1 + 4x2 ≤ 9. Figure 10.3 illustrates the two inequalities. Notice that x1 + 3x2 ≤ 4 is a stronger
inequality since it is more efficient in representing the convex hull of X than 2x1 + 4x2 ≤ 9.

Another related concept is the notion of redundancy. Clearly, in the presence of two constraints
in which one dominates the other, the dominated constraint is also redundant and can be safely
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Figure 10.3: Illustration of dominance between constraints. Notice that x1 + 3x2 ≤ 4 dominates
2x1 + 4x2 ≤ 9 and is thus stronger

removed from the formulation of a polyhedral set P . However, in some cases one might not be able
to identify redundant constraints simply because no constraint is clearly dominated by another.

Even then, there might be a way to identify weak (or redundant) constraints by combining two or
more constraints that then form a dominating constraint. This is formalised in Definition 10.8.

Definition 10.8 (Redundancy). The inequality πx ≤ π0 is redundant for P if there exists k ≥ 1

valid inequalities πix ≤ πi
0 and k ≥ 1 vectors ui > 0, for i ∈ {1, . . . , k}, such that

(∑k
i=1 uiπ

i
)
x ≤

∑k
i=1 uiπ

i
0 dominates πx ≤ π0.

Once again, let us illustrate the concept with a numerical example. Consider we generate the
inequality 5x1 − 2x2 ≤ 6, which is valid for the polyhedral set

P =
{
x ∈ R2

+ : 6x1 − x2 ≤ 9, 9x1 − 5x2 ≤ 6
}
.

The inequality 5x1 − 2x2 ≤ 6 is not dominated by any of the inequalities forming P . However, if
we set ui = ( 13 ,

1
3 ), we obtain 5x1 − 2x2 ≤ 5, which in turn dominates 5x1 − 2x2 ≤ 6. Thus, we

can conclude that the generated inequality is redundant and does not improve the formulation of
P . This is illustrated in Figure 10.4.

0 1 2 3
0

1

2

3

x1

x2

6x1 − x2 ≤ 9

9x1 − 5x2 ≤ 6

5x1 − 2x2 ≤ 6

Figure 10.4: Illustration of a redundant inequality. Notice how the inequality 5x1 − 2x2 ≤ 6 (in
orange) does not dominate any of the other inequalities

As one might realise, checking whether a newly generated inequality improves the current formu-
lation is a demanding task, as it requires finding the correct set of coefficients u for all constraints
currently forming the polyhedral set P . Nonetheless, the notions of redundancy and dominance
can be used to guide procedures that generate or improve existing inequalities. Let us discuss one
of such procedures, in the context of 0-1 knapsack inequalities.
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10.5.2 Strengthening 0-1 knapsack inequalities

Let us consider the family of constraints known as knapsack constraints and see how they can be
strengthened. For that, let us first define the knapsack set

X =



x ∈ {0, 1}

n
:

n∑

j=1

ajxj ≤ b



 .

We assume that aj ≥ 0, j ∈ N = {1, . . . , n}, and b > 0. Let us start by defining the notion of a
minimal cover.

Definition 10.9 (minimal cover). A set C ⊆ N is a cover if
∑

j∈C aj > b. A cover C is minimal
if C \ {j} for all j ∈ C is not a cover.

Notice that a cover C refers to any selection of items that exceed the budget b of the constraint
and this selection is said to be a minimal cover if, upon removing of any item of the selection, the
constraint becomes satisfied. This logic allows us to design a way to generate valid inequalities
using covers. This is the main result in Proposition 10.10.

Proposition 10.10. If C ⊆ N is a cover for X, then a valid cover inequality for X is

∑

j∈C

xj ≤ |C| − 1.

Proof. Let R =
{
j ∈ N : xRj = 1

}
, for xR ∈ X. If

∑
j∈C x

R
j > |C| − 1, then |R ∩ C| = |C|

and C ⊆ R. Thus,
∑

j∈N ajx
R
j =

∑
j∈R aj > b, which violates the inequality and implies that

xR /∈ X.

The usefulness of Proposition 10.10 becomes evident if C is a minimal cover. Let us consider a
numerical example to illustrate this. Consider the knapsack set

X =
{
x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

}
.

The following are minimal cover inequalities for X.

x1 + x2 + x3 ≤ 2

x1 + x2 + x6 ≤ 2

x1 + x5 + x6 ≤ 2

x3 + x4 + x5 + x6 ≤ 3

Notice that we would obtain a non-minimal cover C ′ by adding an inequality xi ≤ 1, i ∈ C ′ \ C,
to a minimal cover inequality of C, which makes the cover inequality somewhat redundant. For
example, adding x7 ≤ 1 to a minimal cover inequality x1 + x2 + x3 ≤ 2 of C = {1, 2, 3} yields a
non-minimal cover C ′ = {1, 2, 3, 7} with inequality x1 + x2 + x3 + x7 ≤ 3.

There is a simple way to strengthen cover inequalities, using the notion of extended cover inequali-
ties. One can extend a cover inequality by expanding the set C with elements that have a coefficient
aj , j ∈ N \ C greater or equal to all coefficients ai, i ∈ C. This guarantees that a swap between
elements must happen for the inequality to be feasible, meaning that the right-hand side of the
constraint remains |C| − 1. This is summarised in Proposition 10.11.



10.5. Obtaining stronger inequalities 165

Proposition 10.11. If C is a cover for X, the extended cover inequality

∑

j∈E(C)

xj ≤ |C| − 1

with E(C) = C ∪ {j ∈ N : aj ≥ ai,∀i ∈ C} is valid for X.

We leave the proof as a thought exercise. Let us however illustrate this using the previous numerical
example. For C = {3, 4, 5, 6}, E(C) = {1, 2, 3, 4, 5, 6}, yielding the inequality

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

which is stronger than x3 + x4 + x5 + x6 ≤ 3 as the former dominates the latter, cf. Definition
10.7.

The above serves as an example of how strong inequalities can be generated for problems with a
known structure. However, this is just one example of many other well-known cutting-generation
methods. In the next chapter, we will mention a few other alternative techniques to generate valid
inequalities that enrich professional-grade implementations of MIP solvers.
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10.6 Exercises

Exercise 10.1: Chvátal-Gomory (C-G) procedure

Consider the set X = P ∩ Zn where P = {x ∈ Rn : Ax ≤ b, x ≥ 0} and in which A is an
m × n matrix with columns {A1, . . . , An}. Let u ∈ Rm with u ≥ 0. The Chvátal-Gomory (C-G)
procedure to construct valid inequalities for X uses the following 3 steps:

1.
n∑

j=1

uAjxj ≤ ub is valid for P , as u ≥ 0 and
n∑

j=1

Ajxj ≤ b.

2.
n∑

j=1

⌊uAj⌋xj ≤ ub is valid for P , as x ≥ 0.

3.
n∑

j=1

⌊uAj⌋xj ≤ ⌊ub⌋ is valid for X, as any x ∈ X is integer and thus
n∑

j=1

⌊uAj⌋xj is integer.

Show that every valid inequality for X can be obtained by applying the Chvátal-Gomory procedure
a finite number of times.

Hint: We show this for the 0-1 case. Thus, let P = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1}, X = P ∩ Zn,
and suppose that πx ≤ π0 with π, π0 ∈ Z is a valid inequality for X. We show that πx ≤ π0 can
be obtained by applying Chvátal-Gomory procedure a finite number of times. We do this in parts
by proving the following claims C1, C2, C3, C4, and C5.

C1. An inequality πx ≤ π0 + t with t ∈ Z+ is valid for P .

C2. For a large enough M ∈ Z+, the inequality

πx ≤ π0 +M

( ∑

j∈N0

xj +
∑

j∈N1

(1− xj)
)

(10.3)

is valid for P for every partition (N0, N1) of N .

C3. If πx ≤ π0 + τ + 1 is a valid inequality for X with τ ∈ Z+, then

πx ≤ π0 + τ +
∑

j∈N0

xj +
∑

j∈N1

(1− xj) (10.4)

is also a valid inequality for X for every partition (N0, N1) of N .

C4. If
πx ≤ π0 + τ +

∑

j∈T 0∪{p}
xj +

∑

j∈T 1

(1− xj) (10.5)

and
πx ≤ π0 + τ +

∑

j∈T 0

xj +
∑

j∈T 1∪{p}
(1− xj) (10.6)

are valid inequalities for X, where τ ∈ Z+ and (T 0, T 1) is any partition of {1, . . . , p− 1}, then

πx ≤ π0 + τ +
∑

j∈T 0

xj +
∑

j∈T 1

(1− xj) (10.7)



10.6. Exercises 167

is also a valid inequality for X.

C5. If

πx ≤ π0 + τ + 1 (10.8)

is a valid inequality for X with τ ∈ Z+, then

πx ≤ π0 + τ (10.9)

is also a valid inequality for X.

Finally, after proving the claims C1 - C5, if we start with τ = t− 1 ∈ Z+ and successively apply
C5 for τ = t− 1, . . . , 0, turning each valid inequality (10.8) of X into a new one (10.9), it leads to
the inequality πx ≤ π0 which is valid for X. This shows that every valid inequality πx ≤ π0 of X
with π, π0 ∈ Z+ can be obtained by applying the C-G procedure a finite number of times.

Exercise 10.2: Chvátal-Gomory (C-G) procedure example

(a) Consider the set X = {x ∈ 0, 15 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}. Derive the following
inequalities as C-G inequalities:

(i) x2 + x4 ≥ 1

(ii) x1 ≤ x2

(b) Consider the set X = {x ∈ 0, 14 : xi + xj ≤ 1 for all i, j ∈ {1, . . . , 4} : i ̸= j}. Derive the
clique inequalities x1 + x2 + x3 ≤ 1 and x1 + x2 + x3 + x4 ≤ 1 as C-G inequalities.

Exercise 10.3: Cuts from the simplex tableau

Consider the integer programming problem IP :

(IP ) max.
x1,x2

2x1 + 5x2

s.t.: 4x1 + x2 ≤ 28

x1 + 4x2 ≤ 27

x1 − x2 ≤ 1

x1, x2 ∈ Z+.

The LP relaxation of the problem IP is obtained by relaxing the integrality constraints x1, x2 ∈ Z+

to x1 ≥ 0 and x2 ≥ 0. The LP relaxation of IP in standard form is the problem LP :

(LP ) max.
x1,x2

2x1 + 5x2

s.t.: 4x1 + x2 + x3 = 28

x1 + 4x2 + x4 = 27

x1 − x2 + x5 = 1

x1, x2, x3, x4, x5 ≥ 0
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The optimal Simplex tableau after solving the problem LP with primal Simplex is

x1 x2 x3 x4 x5 RHS

0 0 -1/5 -6/5 0 -38

1 0 4/15 -1/15 0 17/3

0 1 -1/15 4/15 0 16/3

0 0 -1/3 1/3 1 2/3

(a) Derive two fractional Gomory cuts from the rows of x1 and x5, and express them in terms
of the original variables x1 and x2.

(b) Derive the same cuts as in part (a) as Chvátal-Gomory cuts. Hint: Use Proposition 5 from
Lecture 9. Recall that the bottom-right part of the tableau corresponds to B−1A, where B−1

is the inverse of the optimal basis matrix and A is the original constraint matrix. You can
thus obtain the matrix B−1 from the optimal Simplex tableau, since the last three columns
of A form an identity matrix.

Exercise 10.4: More Gomory cuts

Consider the following integer programming problem IP :

(IP ) : max. z = x1 + 2x2

s.t.: − 3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

x1, x2 ∈ Z+

Solve the problem by adding Gomory cuts to the LP relaxation until you find an integer solution.

Exercise 10.5. The cover separation problem

Consider the 0-1 knapsack set :

X =
{
x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

}

and a solution x̄ = (0, 2/3, 0, 1, 1, 1, 1) to its LP relaxation. Find a cover inequality cutting out
(violated by) the fractional solution x̄.

https://mycourses.aalto.fi/mod/folder/view.php?id=651663


Chapter 11

Mixed-integer Programming
Solvers

11.1 Modern mixed-integer linear programming solvers

In this chapter, we will discuss some of the numerous features that are shared by most professional-
grade implementations of mixed-integer programming (MIP) solvers. As it will become clear, MIP
solvers are formed by an intricate collection of techniques that have been developed over the last
few decades. The continuous improvement and development of new such techniques have enabled
performance improvements beyond purely hardware performance progress. In fact, this is a very
lively and exciting research area, with new features being proposed and incorporated in these
solvers with the frequent new releases of these tools.

The main difference between MIP solver implementations is which “tricks” and techniques they
have implemented. In some cases, these are not disclosed in full detail, since the high-performing
solvers are commercial products subject to trade secrets. Luckily, some open-source (such as
CBC, SCIP, and HiGHS) have been made available, but they are not up to par with commercial
implementations in terms of performance as yet.

We will focus on describing the most important techniques forming a professional-grade MIP
solver implementation. Most MIP solvers allow for significant tuning and on-off toggling of these
techniques. Therefore, knowing the most important techniques and how they work can be beneficial
in configuring MIP solvers to your own needs.

MIP solvers implement a method that is called branch-and-cut which consists of a combination of
the linear-programming (LP)-based branch-and-bound method (as described in Chapter 9) and a
cutting-plane method (as described in Chapter 10) that is employed at the root note (or the first
subproblem LP relaxation) and possibly at later nodes as well. Figure 11.1 illustrates the typical
flowchart of a MIP solver algorithm.

The first phase consists of a preprocessing phase called presolve. In that, the problem formulation
is analysed to check whether redundant constraints or “loose” variables can be trivially removed.
In addition, more sophisticated techniques can be employed to try to infer the optimal value of
some variables via logic or to tighten their bounds. For simple enough problems, the presolve
might be capable of returning an optimal solution or a certificate that the problem is infeasible or
unbounded.

Then, the main solution loop starts, similarly to what we have described in Chapter 9 when
discussing the branch-and-bound method. A node selection method is employed and the LP
relaxation is solved. Then, branching is applied and the process continues until an optimal solution
has been found.

The main difference however relates to the extra cuts and heuristics phases. Together with the

169
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Start Presolve

ReturnNode selection

LP Relaxation

Cuts

Branching

Heuristics

Figure 11.1: The flowchart of a typical MIP solver. The nodes represent phases of the algorithm

presolve, these are likely the phases that most differ between implementations of MIP solvers. The
cut phase consists of the employment of a cutting-plane method onto the current LP relaxation
with the aim of either obtaining an integer solution (and thus pruning the branch by optimality)
or strengthening the formulation of the LP relaxation, as discussed in Chapter 10. Each solver
will have their own family of cuts that are used in this phase, and typically a collection of cut
families is used simultaneously. The heuristics phase is used in combination to try to obtain
primal feasible solutions from the LP relaxations (possibly augmented by cuts) so primal bounds
(integer and feasible solution values) can be obtained and broadcasted to the whole search tree,
hopefully fostering pruning by bound.

In what follows, we will discuss some of the main techniques in each of these phases.

11.2 Presolving methods

Presolving (or preprocessing) methods are typically employed before the start of the branch-and-cut
method. These methods have three main goals: (i) reducing the problem size by fixing variables and
eliminating constraints; (ii) strengthening the LP relaxation by identifying bounds and coefficients
that can be tightened; and (iii) exploiting integrality to improve formulation and identify problem
structures (e.g., knapsack or assignment structures)

Detecting infeasibility and redundancy

Many techniques used in the preprocessing phase rely on the notion of constraint activity. Consider
the constraint a⊤x ≤ b, with x ∈ Rn as a decision variable vector, l ≤ x ≤ u, b ∈ R, where (a, b, l, u)
are given. We say that the minimum activity of the constraint is given by

αmin = min
{
a⊤x : l ≤ x ≤ u

}
=
∑

j:aj>0

aj lj +
∑

j:aj<0

ajuj .

Analogously, the maximum activity of a constraint is given by

αmax= max
{
a⊤x : l ≤ x ≤ u

}
=
∑

j:aj>0

ajuj +
∑

j:aj<0

aj lj

Notice that the constraint activity is simply capturing what is the minimum and maximum (re-
spectively) values the left-hand side of a⊤x ≤ b could assume. This constraint activity can be used



11.2. Presolving methods 171

in a number of ways. For example, if there is a constraint for which αmin > b, then the problem is
trivially infeasible. On the other hand, if one observes that αmax ≤ b for a given constraint, then
the constraint can be safely removed since it is guaranteed to be redundant.

Bound tightening

Another important presolving method is bound tightening, which, as the name suggests, tries to
tighten lower and upper bounds of variables, thus strengthening the LP relaxation formulation.
There are alternative ways that this can be done, and they typically trade off how much tightening
can be observed and how much computational effort they require.

One simple way of employing bound tightening is by noticing the following. Assume, for simplicity,
that aj > 0, ∀j ∈ J . Then, we have that

αmin =
∑

j∈J

aj lj = a⊤l ≤ a⊤x ≤ b,

where l ∈ R|J|. From the second inequality, we obtain

ajxj ≤ b− a⊤x+ ajxj . (11.1)

Let a⊤ = (a, aj)
⊤, x = (x, xj) and l = (l, lj), then we have αmin = a⊤l = a⊤l + aj lj and

a⊤x = a⊤x+ajxj . By the definition of minimum activity, we know that αmin = a⊤l ≤ a⊤x, which
is equivalent to

αmin − aj lj ≤ a⊤x− ajxj .

This can be reformulated as

b− a⊤x+ ajxj ≤ b− αmin + aj lj .

Combining this result with what was obtained from (11.1), we have that

ajxj ≤ b− a⊤x+ ajxj ≤ b− αmin + aj lj ,

from which we can extract the bound

xj ≤
b− αmin + aj lj

aj
,

that is, an upper bound for xj . The procedure can be analogously adapted to obtain a lower bound
as well. Furthermore, rounding can be employed in the presence of integer variables.

Another common bound tightening technique consists of solving a linear programming subproblem
for each variable xj , j = 1, . . . , n. Let

IP : min.
{
c⊤x : x ∈ X = P ∩ Zn

}

where P is a polyhedral set. Then, the optimal solution value of the subproblem

LPxj
: min. {xj : x ∈ P}

provides a lower bound for xj that considers all possible constraints at once. Analogously, solving
LPxj as a maximisation problem yields an upper bound. Though this can be done somewhat
efficiently, this clearly has steeper computational requirements.
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Coefficient tightening

Different from bound tightening, coefficient tightening techniques aim at improving the strength
of existing constraints. The simplest form consists of the following. Let aj > 0, xj ∈ {0, 1}, such
that αmax − aj < b. If such coefficients are identified, then the constraint

ajxj +
∑

j′:j′ ̸=j

aj′xj′ ≤ b

can be modified to become

(αmax − b)xj +
∑

j′:j′ ̸=j

aj′xj′ ≤ (αmax − aj).

Notice that the modified constraint is valid for the original integer set while dominating the original
constraint (cf. Definition 10.7 since, on the left-hand side, we have that αmax − b < aj and on the
right-hand side we have αmax − aj < b).

Other methods

There is a wide range of methods employed as preprocessing, and they vary greatly among different
solvers and even different modelling languages. Thus, compiling an exhaustive list is no trivial feat.
Some other common methods that are employed include:

• Merge of parallel rows and columns: methods implemented to identify pairs of rows
(constraints) and columns (variables) with constant proportionality coefficient (i.e., are lin-
early dependent) and merge them into a single entity, thus reducing the size of the model.

• Domination tests between constraints: heuristics that test whether domination between
selected constraints can be asserted so that some constraints can be deemed redundant and
removed.

• Clique merging: a clique is a subset of vertices of a graph that are fully connected. Assume
that xj ∈ {0, 1} for j ∈ {1, 2, 3} and that the three constraints hold:

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x2 + x3 ≤ 1.

Then, one can think of these constraints forming a clique between the imaginary nodes 1, 2,
and 3, which renders the clique cut x1 + x2 + x3 ≤ 1. Many other similar ideas using this
graph representation of implication constraints, known as conflict graphs are implemented in
presolvers to generate valid inequalities for MIPs.

• Greatest common denominator (GCD) reduction: Assume that xj ∈ {0, 1} for j ∈ J .
We can use the GCD of the coefficients a = [a1, . . . , an] to generate or tighten inequalities.
Let gcd(a) be the GCD of all coefficients aj in a. Then, we can generate the valid inequality

∑

j∈J

aj
gcd(a)

xj ≤
⌊

b

gcd(a)

⌋
.
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Some final remarks are worth making. Most solvers might, at some point in the process of solving
the MIP refer to something called restart, which consists of reapplying some or all of the techniques
associated with the preprocessing phase after a few iterations of the branch-and-cut process. This
can be beneficial since in the solution process new constraints are generated (cuts) which might
lead to new opportunities for reducing the problem or further tightening bounds.

In addition, conflict graphs can contain information that can be exploited in a new round of pre-
processing and transmitted across all search tree, a process known as propagation. Conflict graphs
and propagation are techniques originally devised for constraint programming and satisfiability
(SAT) problems, but have made considerable inroads in MIP solvers as well.

11.3 Cut generation

One major component of MIP solvers is its cut generation procedures. In practice, MIP solvers
implement what is called branch-and-cut, which is a method formed by the amalgamation of branch-
and-bound (as we have seen in Chapter 9) and cutting-plane methods (Chapter 10). In fact, the
combination of both methods is arguably the most important methodological development that
ultimately rendered MIP solvers reliable to be used in practice in many applications.

There is an interesting symbiotic relationship emerging from the combination of the two methods.
In general, cutting planes are useful in tightening the existing formulation but often fail in being
able to generate all the cuts required to expose an integer optimal solution. On the other hand,
branch-and-bound might require considerable computational efforts to adequately expose the inte-
ger optimal solutions of all subproblems, but is guaranteed to converge in finite time (even if this
time is not feasible in a practical sense). Thus, the combination of both allows for a method that
is far more likely to terminate within reasonable computation time.

However, some care must be considered when generating cuts in branch-and-cut settings, since it
can quickly increase the dimension of the subproblems, which would lead to amplified consequences
to the performance of the branch-and-bound part. This is mitigated with a feature called cut pool,
which consists of a way to make sure that only selected cuts, e.g., cuts that are violated by the
solution of the relaxation, are considered in the subproblem. Such cuts are chosen using what is
referred to as cut selection routines.

Furthermore, most professional-grade solvers allow for the definition of user cuts, which are user-
defined cuts that are problem-specific, but give strong customisation powers to advanced users. As
it turns out, the types of cuts available is one of the main differentiators between solvers and the
search for cuts that are both efficient and generic is an active research and development direction.

The most common types of cuts utilised include fractional (or Gomory) cuts, of the form

∑

j∈IN

fijxj ≥ fi0, where fij = aij − ⌊aij⌋

and Chvátal-Gomory cuts for pure integer constraints, which are dependent on the heuristic or
process used to define the values of the multipliers u in

n∑

j=1

⌊uAj⌋xj ≤ ⌊ub⌋.

For example, zero-half cuts (with u ∈ [0, 1/2]) and mod-k cuts (u ∈ {0, 1/k, . . . , (k − 1)/k}) are
available in most solvers. Other cuts such as knapsack (or cover) inequalities, mixed-integer round-
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ing, and clique cuts are also common and, although they can be shown to be related to the Chvátal-
Gomory procedure, are generated by means of heuristics (normally referring to a cut generation
procedure).

11.3.1 Cut management: generation, selection and discarding

With the numerous possibilities of cuts to be generated, it becomes clear that one must be mindful
of the total of cuts generated and its associated trade-offs. These trade-offs are managed taking
into account which cuts to generate and which cuts to select from the cut pool to be added to
the problem. In particular, in the case of the generation and selection of cuts, this can often be
influenced by users, by selecting how “aggressively” cuts are generated.

For example, although dual simplex is perfectly suited for resolving the linear programming (LP)
relaxation after the addition of cuts, if multiple cuts are added at once, it might mean that resolving
the LP relaxation from the previous dual optimal basis is not much more beneficial than resolving
the LP relaxation from scratch. Moreover, adding cuts increases the size of the basis in the
problem, which in turn increases the size of the basic matrix B and its inverse B−1, thus gradually
increasing the time per iteration of the method. Lastly, some cuts might require the solution
of a demanding separation problem, e.g., lifted cover inequalities. Although these can provide
considerable improvements to the formulation, the computational effort required for generating
them might dampen the performance improvement they incur.

Selecting which cuts would be the most efficient is not an easy task. Ideally, we would like to choose
the minimal number of cuts that has the most impact in terms of improving the LP relaxation.
Clearly, we can only try to achieve this via proxies. Solvers normally associate a scoring to each
cut taking into account a collection of criteria and these scores are then used in the process of
selecting the cuts (their cut selection routines), e.g., selecting a fraction of the top scorer cuts or
discarding those that the score is below a certain threshold.

One criterion for trivially discarding cuts is numerical stability. Cuts with too large or too small
coefficients are prone to cause numerical issues due to the matrix decomposition methods employed
within the simplex method. Therefore, these can be easily disregarded in the selection process.

An important proxy for efficiency is the notion of depth of the cut. That is, a cut can have its
depth measured by the distance between the hyperplane that forms the cut and the solution of the
LP relaxation. The larger this distance, the “deeper” the cut is cutting through the LP relaxation,
which could potentially mean that the cut is more efficient.

Another important proxy is orthogonality. Cuts that are pairwise orthogonal with other cuts are
likely to be more effective. This is easy to see if you think of the extreme case of zero orthogo-
nality, or the cuts being parallel, clearly meaning that one of the cuts is dominated by the other.
Orthogonality can also be measured against the objective function, in which case we are interested
in cuts that are almost parallel (but not exactly, as this would lead to numerical issues) to the ob-
jective function since those are more likely to cause improvement in the dual bound (LP relaxation
optimal) value.

11.4 Variable selection: branching strategy

As we discussed in Chapter 9, some decisions in terms of selecting variables to branch and sub-
problems to solve can have a great impact in the total number of subproblems solved in a branch-
and-bound method. Variable selection is still a topic under intensive research, with newer ideas
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only recently being made available in the main solvers.

Variable selection, commonly referred to as branching strategies in most MIP solver implemen-
tations, refers to the decision of which of the currently fractional variables should be chosen to
generate subproblems. There are basically three main methods most commonly used, which we
discuss next. Furthermore, most MIP solvers allow the user to set priority weights for the variables,
which defines priority orders for variable selection. These can be useful for example when the user
knows that the problem possesses a dependence structure between variables (e.g., location and
allocation variables, where allocation can only happen if the location decision is made) that the
solver cannot infer automatically.

Maximum infeasibility

The branching strategy called maximum infeasibility consists of choosing the variable with the
fractional part as close to 0.5 as possible, or, more precisely selecting the variables j ∈ {1, . . . , n}
as

arg max
j∈{1,...,n}

min {fj , 1− fj}

where fj = xj−⌊xj⌋. This in effect is trying to reduce as most as possible the infeasibility of the LP
relaxation solution, which in turn would more quickly lead to a feasible (i.e., integer) solution. An
analogous form called minimum infeasibility is often available, and as the name suggests, focuses
on selecting the variables that are closer to being integer-valued.

Strong branching

Strong branching can be understood as an explicit look-ahead strategy. That is, to decide which
variable to branch on, the method performs branching on all possible variables, and chooses the
one which provides the best improvement on the dual (LP relaxation) bound. Specifically, for
each fractional variable xj , we can solve the LP relaxations corresponding to branching options
xj ≤ ⌊xLP⌋ and xj ≥ ⌈xLP⌉ to obtain LP relaxation objective values ZD

j and ZU
j , respectively.

We then choose the fractional variable xj that leads to subproblems with the best LP relaxation
objective values, defined as

arg max
j∈{1,...,n}

min
{
ZD
j , Z

U
j

}
,

assuming a minimisation problem. Strong branching thus compares the worse LP relaxation bound
for each fractional xj and picks the fractional variable for which this value is the best.

As one might suspect, there is a trade-off related to the observed reduction in the number of nodes
explored given by the more prominent improvement of the dual bound, and how computationally
intensive is the method. There are however ideas that can exploit this trade-off more efficiently.
First, the solution of the subproblems might yield information related to infeasibility and pruning
by limit, which can be used in favour of the method.

Another idea is to limit the number of simplex iterations performed when solving the subproblems
associated with each branching option. This allows for using an approximate solution of the
subproblems and potential savings in computational efforts. Some solvers offer a parameter that
allows the user to set this iteration limit value.
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Pseudo-cost branching

Pseudo-cost branching relies on the idea of using past information from the search process to
estimate gains from branching on a specific variable. Because of this reliance on past information,
the method tends to be more reliable later in the search tree, where more information has been
accumulated on the impact of choosing a variable for branching.

These improvement estimates are the so-called pseudo-costs, which compile an estimate of how
much the dual (LP relaxation) bound has improved per fractional unit of the variable that has
been reduced. More specifically, let

f−j = xLPj − ⌊xLPj ⌋ and f+j = ⌈xLPj ⌉ − xLPj . (11.2)

Then, we can define the quantities Ψ−
j and Ψ+

j to be the average improvement in the dual bound
observed per fractional unit reduced and increased, respectively, whenever the variable xj has
been selected for branching, i.e, for each branching direction. Notice that this requires that several
subproblems to be solved for a reliable estimate to be available.

Then, we can define the quantities

∆−
j = f−j Ψ−

j and ∆+
j = f+j Ψ+

j (11.3)

which represent the estimated change to be observed when selecting the variable xj for branching,
based on the current fractional parts f−j and f+j . In effect, these are considered in a branching
score, with the branching variable being selected as, for example,

j = argmax
j=1,...,n

{
αmin

{
∆−

j ,∆
+
j

}
+ (1− α)max

{
∆−

j ,∆
+
j

}}
.

where α ∈ [0, 1]. Setting the value of α trades off two aspects. Assume a maximisation problem.
Then, setting α closer to zero will slow down degradation, which refers to the decrease of the
upper bound (notice that the dual bound is decreasing and thus, ∆+ and ∆− are negative). This
strategy improves the chances of finding a good feasible solution on the given branch, and, in turn,
potentially fostering pruning by bound. In contrast, setting α closer to one increases the rate of
decrease (improvement) of the dual bound, which can be helpful for fostering pruning once a good
global primal bound is available. Some solvers allow for considering alternative branching score
functions.

As one might suspect, it might take several iterations before reliable estimates Ψ+ and Ψ− are
available. The issue with unreliable pseudo-costs can be alleviated with the use of a hybrid strategy
known as reliability branching1. In that, variables that are deemed unreliable for not having been
selected for branching a minimum number of times η ∈ [4, 8], have strong branching employed
instead.

GUB branching

Constraints of the form
k∑

j=1

xj = 1

are referred to as special ordered sets 1 (or SOS1) which, under the assumption that xj ∈ {0, 1},
∀j ∈ {1, . . . , k} implies that only one variable can take value different than zero. Notice you may

1Tobias Achterberg, Thorsten Koch, and Alexander Martin (2005), Branching rules revisited, Operations Re-
search Letters
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have SOS1 sets involving continuous variables, which, in turn, would require the use of binary
variables to be modelled appropriately.

Branching on these variables might lead to unbalanced branch-and-bound trees. This is because
the branch in which xj is set to a value different than zero, immediately defines the other variables
to be zero, leading to an early pruning by optimality or infeasibility. In turn, unbalanced trees are
undesirable since they preclude the possibility of parallelisation and might lead to issues related
to searches that focus on finding leaf notes quickly.

To remediate this, the idea of using a generalised upper bound is employed, leading to what is
referred to as GUB branching (with some authors referring to this as SOS1 branching). A gener-
alised upper bound is an upper bound imposed on the sum of several variables. In GUB branching,
branching for binary variables is imposed considering the following rule:

S1 = S ∩ {x : xji = 0,∀i ∈ {1, . . . , r}}
S2 = S ∩ {x : xji = 0,∀i ∈ {r + 1, . . . , k}}

where r = argmaxt∈{1,...,k}
∑t

j=1 xj ≤ 0.5. Notice the upper bounding on some of the variables,
which inspires the name GUB branching. That is, only a subset of the variables are forced to be
zero, while several others are left unconstrained, which favours more balanced search trees. As a
final remark, constraints of the form of

k∑

j=1

xj ≤ 1

can also benefit from the use of GUB branching, with the term GUB being perhaps better suited
in this case.

11.5 Node selection

We now focus on the strategies associated with selecting the next subproblem to be solved. As we
have seen in Chapter 9, the order in which the subproblem’s LP relaxations are solved can have
a major impact on the total number of nodes explored, and, consequently, on the efficiency of the
method. The alternative strategies for node selection typically trade off the following:

1. Focus on finding primal feasible solutions earlier, to foster pruning by bound.

2. Alternatively, focus on improving the dual bound faster, hoping that once an integer solution
is found, more pruning by bound is possible.

3. Increase ramp-up, which means increasing the number of unsolved nodes in the list of sub-
problems so that these might be solved in parallel. For that, the nodes must be created, and
the faster they are opened, the earlier parallelisation can benefit the search.

4. Minimise computational effort by minimising the overhead associated with changing the
subproblems to be solved. That means that children nodes are preferred over other nodes,
in a way to minimise the changes needed to assemble a starting basis for the dual simplex
method.

You might notice that points 1 and 2 are conflicting since while the former would benefit from a
breadth-focused search (that is, having wider trees earlier is preferable than deeper trees) the latter
would benefit from searches that dive deeply into the tree searching from leaf nodes. Points 3 and
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4 pose exactly the same dilemma: the former benefits from breadth-focusing searches while the
latter benefits from depth-focusing searches.

The main strategies for node selection are, to a large extent, ideas to emphasise each or a combi-
nation of the above.

Depth-first search (DFS) and breadth-first search (BFS)

A depth-first search focus on diving down into the search tree, prioritising nodes at lower levels. It
has the effect of increasing the chances of finding leaves, and potentially primal feasible solutions,
earlier. Furthermore, because the problems being successively solved are very similar, with the
exception of one additional branching constraint, the dual simplex methods can be efficiently
restarted and often fewer iterations are needed to find the optimal of the children’s subproblem
relaxation. On the other hand, as a consequence of the way the search is carried out, it is slower
in populating the list of subproblems.

In contrast, breadth-first search gives priority to nodes at higher levels in the tree, ultimately
causing a horizontal spread of the search tree. This has as a consequence a faster improvement of
the dual bound, at the expense of potentially delaying the generation of primal feasible solutions.
This also generates more subproblems quickly, fostering diversification (more subproblems and po-
tentially more information to be re-utilised in repeated rounds of preprocessing) and opportunities
for parallelisation.

Best bound

Best bound consists of the strategy of choosing the next node to be solved by selecting that with
the best dual (LP relaxation) bound. It leads to a breadth-first search pattern, but with the
flexibility to allow potentially good nodes that are in deeper levels of the tree to be selected.

Ultimately, this strategy fosters a faster improvement of the dual bound, but with a higher overhead
on the set-up of the subproblems, since they can be quite different from each other in terms of their
constraints. One way to mitigate this overhead is to perform diving sporadically, which consists of,
after choosing a node by best bound, temporarily switching to a DFS search for a few iterations.

Best estimate or best projection

Uses a strategy similar to that employing pseudo-costs to choose which variable to branch on.
However, instead of focusing on objective function values, it uses estimates of the node progress
towards feasibility relative to its bound degradation.

To see how this works, assume that the parent node has been solved, and a dual bound zD is
available. Now, using our estimates in (11.3), we can calculate an estimate of the potential primal
feasible solution value E, given by

E = zD +

n∑

j=1

min
{
∆−

j ,∆
+
j

}
.

The expression E is an estimate of what is the best possible value an integer solution could have
if it were to be generated by rounding the LP relaxation solution. These estimates can also take
into account the feasibility per se, trying to estimate feasibility probabilities considering known
feasible solutions and how fractional the subproblem LP relaxation solution is.
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11.6 Primal heuristics

The last element of MIP solvers we must consider is the set of primal heuristics they MIP solver
has available. The term “primal” refers to the fact that these are methods geared towards either
(i) building primal feasible solutions normally from a solution obtained from a relaxation; or (ii),
geared towards improving on previously known primal solutions. The former strategy is often
referred to as constructive heuristics, while the latter is called improvement heuristics.

The name heuristic refers to the fact that these are methods that are not guided by any optimal-
ity certificates per se, but focus only on performing local improvements repeatedly (or within a
neighbourhood or a current reference solution), according to a given metric of solution difference.

Primal heuristics play three main important roles in MIP solver algorithms. First, they are em-
ployed in the preprocessing phase to verify whether the model can be proved to be feasible, by
constructing a primal feasible solution. Second, constructive heuristics are very powerful in gen-
erating feasible solutions during the branch-and-bound phase, meaning that it can make primal
feasible solutions available before they are found at leaf nodes when pruning by optimality (i.e., with
integer LP relaxation solution), and therefore fostering early pruning by bound. Lastly, heuristics
are a powerful way to obtain reasonably (often considerably) good solutions, which in practical
cases might be sufficient, given computational or time limitations and precision requirements.

11.6.1 Diving heuristics

Diving heuristics are used in combination with node selection strategies that search in breadth
(instead of depth). In simple terms, it consists of performing a local depth search at the node
being considered with no or very little backtracking, with the hope of reusing the subproblem
structure while searching for primal feasible solutions. The main difference is that the subproblems
are generated in an alternative tree in which branching is based on rounding and fixing instead of
the standard branching we have seen in Chapter 9.

Once the heuristic terminates, the structure is discarded, but the solution, if found, is kept. Notice
that the diving can also be preemptively aborted if it either renders an infeasible subproblem or if it
leads to a relaxation with a worse bound than a known primal bound from an incumbent solution.
Another common termination criterion consists of limiting the total number of LP iterations solving
the subproblems or the total number of subproblems solved.

The most common types of rounding employed in diving heuristics include fractional diving, in
which the variable selected for rounding is simply that with the smallest fractional component,
i.e., xj is chosen, such that the index j is given by

argmax
i=1,...,n

{min {xi − ⌊xi⌋, ⌈xi⌉ − xi}} .

Another common idea consists of selecting the variables to be rounded by considering a reference
solution, which often is an incumbent primal feasible solution. This guided dive is then performed
by choosing the variable with the smallest fractional value when compared against this reference
solution.

A third idea consists of taking into account the number of locks associated with the variable. The
locks refer to the number of constraints that are potentially made infeasible by rounding up or down
a variable. This potential infeasibility stems from taking into count the coefficient of the variable,
the type of constraint and whether rounding it up or down can potentially cause infeasibility. This
is referred to as coefficient diving.
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11.6.2 Local searches and large-neighbourhood searches

Local and large-neighbourhood searches are, contrary to most diving heuristics, improvement
heuristics. In these, a reference solution is used to search for new solutions within its neigh-
bourhood. This is simply the idea of limiting any solutions found to share a certain number of
elements (for example, having the same values in some components) with the reference solution.
We say that a solution is a k-neighbour solution if they share k components.

Local search and large-neighbourhood search simply differ in terms of scope; the former allows for
only localised change while the latter considers wider possibilities for divergence from the reference
solution.

Some of these searches are seldom used and often turned off by default in professional-grade solvers.
They tend to be expensive from a computational standpoint because they require considerable
extra work. Most of them are based on fixing and/or relaxing the integrality of a number of
variables, adding extra constraints and/ or changing objective functions, and resolving which can
be considerably onerous. Let us present the most common heuristics found in professional grade
solvers.

Relaxation-induced neighbourhood search (RINS) and Relaxation-enforced neigh-
bourhood search

The relaxation-induced neighbourhood search (or RINS) is possibly the most common improvement
heuristic available in modern implementations2. The heuristic tries to find solutions that present
a balance between proximity of the current LP solution, hoping this would improve the solution
quality, and proximity to an incumbent (i.e., best-known primal feasible) solution, emphasising
feasibility.

In a nutshell, the method consists of the following. After solving the LP relaxation of a node,
suppose we obtain the solution xLP. Also, assume we have at hand an incumbent (integer feasible)
solution x. Then, we form an auxiliary MIP problem in which we fix all variables coinciding
between xLP and x. This can be achieved by using the constraints

xj = xj , ∀j ∈ {1, . . . , n} : xj = xLPj ,

which, in effect, fixes these variables to integer values and removes them from the problem, as they
can be converted to parameters (or input data). Notice that this constrains the feasible space to
be in the (potentially large) neighbourhood of the incumbent solution. In later iterations, when
more of the components of the relaxation solutions xLP are integer, this becomes a more localised
search, with fewer degrees of freedom. Finally, this additional MIP is solved and, in case an optimal
solution is found, a new incumbent solution might become available.

In contrast, relaxation-enforced neighbourhood search (or RENS) is a constructive heuristic, which
has not yet seen a wider introduction in commercial-grade solvers, though it is available in CBC
and SCIP3.

The main differences between RINS and RENS are the fact that no incumbent solution is considered
(hence the dropping of the term “induced”) but rather the LP relaxation solution xLP fully defines
the neighbourhood (explaining the name “enforced”).

2Emilie Danna, Edward Rothberg, and Claude Le Pape (2005), Exploring relaxation induced neighborhoods to
improve MIP solutions, Mathematical Programming

3Timo Berthold (2014), RENS: The optimal rounding, Mathematical Programming Computation
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Once again, let us assume we obtain the solution xLP. And again, we fix all integer-valued variables
in xLP, forming a large neighbourhood

xj = xLPj , ∀j ∈ {1, . . . , n} : xLPj ∈ Z.

One key difference is how the remaining variables are treated. For those components that are
fractional, the following bounds are imposed

⌊xj⌋ ≤ xj ≤ ⌈xj⌉, ∀j ∈ {1, . . . , n} : xLPj /∈ Z.

Notice that this in effect makes the neighbourhood considerably smaller around the solution xLP.
Then, the MIP subproblem with all these additional constraints is solved and a new incumbent
solution may be found.

Local branching

The idea of local branching is to allow the search to be performed in a neighbourhood of controlled
size, which is achieved by the use of an L1-norm

4. The size of the neighbourhood is controlled by
a divergence parameter ∆, which in the case of binary variables, amounts to being the Humming
distance between the variable vectors.

In its most simple form, it can be seen as the following idea. From an incumbent solution x, one
can generate and impose the following neighbourhood-inducing constraint

n∑

j=1

|xj − xj | ≤ ∆

and then solve the resulting MIP.

The original use of local branching (as the name suggests) as proposed is to use this constraint
directly to form a branching rule in an auxiliary tree search. However, most solvers use it by means
of subproblems as described above.

Feasibility pump

Feasibility pump is a constructive heuristic that, contrary to the previous heuristics, has made
inroads in most professional-grade solvers and is often employed by default. The focus is exclusively
on trying to find a first primal feasible solution. The idea consists of, from the LP relaxation
solution xLP, performing alternate steps of rounding and solving a projection step, which happens
to be an LP problem.

Starting from the xLP, the method starts by simply rounding the components to obtain an integer
solution x. If this rounded solution is feasible, the algorithm terminates. Otherwise, we perform a
projection step by replacing the LP relaxation objective function with

faux(x) =

n∑

j=1

|xj − xj |

and resolving it. This is called a projection because it is effectively finding a point in the feasible
region of the LP relaxation that is the closest to the integer solution x. This new solution xLP is
once again rounded and the process repeats until a feasible integer solution is found.

4Matteo Fischetti and Andrea Lodi (2003), Local branching, Mathematical Programming
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It is known that feasibility pump can suffer from cycling, that is, repeatedly finding the same
xLP and x solutions. This can be alleviated by performing random perturbations on some of the
components of x.

Feasibility pump is an extremely powerful method and plays a central role in many professional-
grade solvers. It is also useful in the context of mixed-integer nonlinear programming models.
More recently, variants have been developed5, taking into account the quality of the projection
(i.e., taking into account also the original objective function) and discussing theoretical properties
of the methods and its convergence guarantees.

5Timo Berthold, Andrea Lodi, and Domenico Salvagnin (2018), Ten years of feasibility pump, and counting,
EURO Journal on Computational Optimization
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11.7 Exercises

Problem 11.1: Preprocessing and primal heuristics

(a) Tightening bounds and redundant constraints

Consider the LP below,

max. 2x1 + x2 − x3
s.t.: 5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≤ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

x3 ≥ 1.

Derive tightened bounds for variables x1 and x3 from the first constraint and eliminate
redundant constraints after that.

(b) Primal heuristics (RINS)

Consider the formulation UFL-W:

(UFL-W) : min.
x,y

∑

j∈N

fjyj +
∑

i∈M

∑

j∈N

cijxij (11.4)

s.t.:
∑

j∈N

xij = 1, ∀i ∈M, (11.5)

∑

i∈M

xij ≤ myj , ∀j ∈ N, (11.6)

xij ≥ 0, ∀i ∈M, ∀j ∈ N, (11.7)

yj ∈ {0, 1}, ∀j ∈ N, (11.8)

where fj is the cost of opening facility j, and cij is the cost of satisfying client i’s demand
from facility j. Consider an instance of the UFL with opening costs f = (21, 16, 30, 24, 11)
and client costs

(cij) =




6 9 3 4 12

1 2 4 9 2

15 2 6 3 18

9 23 4 8 1

7 11 2 5 14

4 3 10 11 3




In the UFL problem, the facility production capacities are assumed to be large, and there is
no budget constraint on how many facilities can be built. The problem thus has a feasible so-
lution if at least one facility is opened. We choose an initial feasible solution ȳ = (0, 1, 0, 0, 0).
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Try to improve the solution by using relaxation-induced neighbourhood search (RINS) and
construct a feasible solution using relaxation-enforced neighbourhood search (RENS).

Problem 11.2: Variable and node selection

Using Branch-and-Bound, solve the UFL-W problem from the exercises in Chapter 9:

(UFL-W) : min.
x,y

∑

j∈N

fjyj +
∑

i∈M

∑

j∈N

cijxij (11.9)

s.t.:
∑

j∈N

xij = 1, ∀i ∈M, (11.10)

∑

i∈M

xij ≤ myj , ∀j ∈ N, (11.11)

xij ≥ 0, ∀i ∈M,∀j ∈ N, (11.12)

yj ∈ {0, 1}, ∀j ∈ N, (11.13)

with opening costs f = (4, 3, 4, 4, 7) and client costs

(cij) =




12 13 6 0 1

8 4 9 1 2

2 6 6 0 1

3 5 2 1 8

8 0 5 10 8

2 0 3 4 1




.

• To obtain a good start for branching, use strong branching at the root node. All following
branching variables should be selected using maximum infeasibility.

• For node selection, use the best bound selection to minimze the number of evaluated nodes.
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Decomposition Methods

12.1 Large-scale problems

In this chapter, we consider the notion of decomposition, which consists of a general term used in the
context of mathematical programming to refer to solution methods that utilise some separability
mechanism to more efficiently solve large-scale problems.

In general, decomposition methods are based on the premise that it is more efficient, under a
computational standpoint, to repeatedly resolve a (collection of) smaller instances of a problem
than to solve the full-scale original problem. More recently, with the widespread adoption of
multithreaded processors and computing clusters with multiple nodes, decomposition methods
have become attractive as parallelisation strategies, which can yield considerable computational
savings.

There are mainly two classes of decomposition methods. The first class utilises the explicit rep-
resentation of polyhedral sets, as stated in Theorem ??, to iteratively reconstruct the full-scale
problem, with the hope that the structure containing the optimal vertex will be successfully re-
constructed before all of the problem itself is reconstructed. It turns out that this is the case
in many applications, which is precisely the feature that renders these methods very efficient in
some contexts. This is the class of methods we are going to analyse in this chapter, first the
Dantzig-Wolfe decomposition and related column generation, and then its equivalent dual method,
generally known as Benders’ decomposition.

The second class of methods utilises Lagrangian duality for obtaining separability. We will delay
the presentation of this sort of approach to Part II, when we discuss Lagrangian duality under the
more general context of nonlinear programming problems.

In either case, decomposition methods are designed in a way that they seek to break problems into
easier parts by removing linking elements. Specifically, let

(P ) : min.
{
c⊤x : x ∈ X

}
,

where X =
⋂K

k=1Xk, for some K > 0, and

Xk =
{
xk ∈ Rnk

+ : Dkxk = dk
}
,∀k ∈ {1, . . . ,K} .

That is, X is the intersection of K standard-form polyhedral sets. Our objective is to devise a way
to break into K separable parts that can be solved separately and recombined as a solution for P .
In this case, this can be straightforwardly achieved by noticing that P can be equivalently stated
as

185
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(P ) : max. x c⊤1 x1 + · · ·+ c⊤KxK
s.t.: D1x1 = d1

. . .
...

DKxK = dK

x1, . . . , xK ∈ Rn
+

has a structure that immediately allows for separation. That is, P could be solved asK independent
problems

Pk : min.
{
c⊤k xk : xk ∈ Xk

}

in parallel and then combine their individual solutions onto a solution for P , simply by making
x = [xk]

K
k=1 and c⊤x =

∑K
i=1 c

⊤
k xk. Notice that, if we were to assume that the solution time

scales linearly (it does not; it grows faster than linear) and K = 10, then solving P as K separated
problems would be ten times faster (that is not true; there are bottlenecks and other considerations
to take into account, but the point stands).

Unfortunately, complicating structures often compromise this natural separability, preventing one
from being able to directly exploit this idea. Specifically, two types of complicating structures
can be observed. The first is of the form of complicating constraint. That is, we observe that a
constraint is such that it connects variables from (some of) the subsets Xk. In this case, we would
notice that P has an additional constraint of the form

A1x1 + · · ·+AKxK = b,

which precludes separability, since the problem structure becomes

P ′ : max. x c⊤1 x1 + · · ·+ c⊤KxK
s.t.: A1x1 + · · ·+ AKxK = b

D1x1 = d1
. . .

...

DKxK = dK

x1, . . . , xK ∈ Rn
+.

The other type of complicating structure is the case in which the same set of decision variable is
present in multiple constraints, or multiple subsets Xk. In this case, we observe that variables of a
subproblem k ∈ {1, . . . ,K} has nonzero coefficient in another subproblem k′ ̸= k, k′ ∈ {1, . . . ,K}.
Hence, problem P takes the form of

P ′′ : max. x c⊤0 x0+ c⊤1 x1 + · · ·+ c⊤KxK
s.t.: A1x0+ D1x1 = d1

...
. . .

...

AKx0+ DKxK = dK

x0, x1, . . . , xK ∈ Rn
+.

The challenging aspect is that a specific method becomes more suitable depending on the com-
plicating structure. Therefore, being able to identify these structures is one of the key success
factors in terms of the chosen method’s performance. As a general rule, problems with complicat-
ing constraints (as P ′) are suitable to be solved by a delayed variable generation method such as
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column generation. Analogously, problems with complicating variables (P ′′) are better suited for
employing delayed constraint generation methods such as Benders decomposition.

The development of professional-grade code employing decomposition methods is a somewhat
recent occurrence. The commercial solver CPLEX offers a Benders decomposition implementation
that requires the user to specify the separable structure. On the other hand, although there are
some available frameworks for implementing column generation-based methods, these tend to be
more ad hoc occurrences yet often reap impressive results.

12.2 Dantzig-Wolfe decomposition and column generation*

Before we move forward, we need to discuss some technical results that will be useful for describing
the Dantzig-Wolfe and Benders decomposition methods. Those are results mostly based on the
notion of linear duality from Chapters 5 and 6.

12.2.1 Resolution theorem

A polyhedral set P in standard form can be represented in two manners: either by (i) a finite set
of linear constraints; or (ii) by combinations of its extreme points and extreme rays. Clearly, the
first representation is far more practical than the second. That is, the second representation is
an explicit representation that would require knowing beforehand each extreme point and extreme
ray forming the polyhedral set.

Notice that the first representation, which we have relied on so far, has extreme points and ex-
treme rays only implicitly represented. However, we will see that this explicit representation has
an important application in the devising of alternative solution methods for large-scale linear pro-
gramming problems. This fundamental result is stated in Theorem 12.1.

Theorem 12.1 (Resolution theorem). Let P = {x ∈ Rn : Ax ≥ b} be a nonempty polyhedral set

with at least one extreme point. Let {xi}ki=1 be the set with all extreme points, and {w}rj=1 be the
set of all extreme rays of P . Then P = Q, where

Q =





k∑

i=1

λix
i +

r∑

j=1

θjw
j : λi ≥ 0, θj ≥ 0,

k∑

i=1

λi = 1



 .

Theorem 12.1 has an important consequence, as it states that bounded polyhedra, i.e., a polyhedral
set that has no extreme rays, can be represented by the convex hull of its extreme points. For now,
let us look at an example that illustrates the concept.

Consider the polyhedral set P given by

P = {x1 − x2 ≥ −2;x1 + x2 ≥ 1, x1, x2 ≥ 0} .

The recession cone C = recc(P ) is described by d1 − d2 ≥ 0, d1 + d2 ≥ 0 (from Ad = 0), and
d1, d2 ≥ 0, which can be simplified as

C =
{
(d1, d2) ∈ R2 : 0 ≤ d2 ≤ d1

}
.

We can then conclude that the two vectors w1 = (1, 1) and w2 = (1, 0) are extreme rays of P .
Moreover, P has three extreme points: x1 = (0, 2), x2 = (0, 1), and x3 = (1, 0).
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Figure 12.1 illustrates what is stated in Theorem 12.1. For example, a representation for the point
y = (2, 2) ∈ P is given by

y =

[
2

2

]
=

[
0

1

]
+

[
1

1

]
+

[
1

0

]
,

that is, y = x2 + w1 + w2. Notice, however, that y could also be represented as

y =

[
2

2

]
=

1

2

[
0

1

]
+

1

2

[
1

0

]
+

3

2

[
1

1

]
,

with then y = 1
2x

2 + 1
2x

3 + 3
2w

1. Notice that this imply that the representation of each point is
not unique.

0 1 2 3
x1

0

1

2

3

x 2

x1

x2

x3

w1

w2

y

Recession 
cone

Figure 12.1: Example showing that every point of P = {x1 − x2 ≥ −2;x1 + x2 ≥ 1, x1, x2 ≥ 0}
can be represented as a convex combination of its extreme point and a linear combination of its
extreme rays

12.2.2 Dantzig-Wolfe decomposition

We start with the Dantzig-Wolfe decomposition, which consists of an alternative approach for
reducing memory requirements when solving large-scale linear programming problems. Then, we
show how this can be expanded further with the notion of delayed variable generation to yield a
truly decomposed problem.

As before, let Pk = {xk ≥ 0 : Dkxk = d}, with Pk ̸= ∅ for k ∈ {1, . . . ,K}. Then, the problem P
can be reformulated as:

min.

K∑

k=1

c⊤k xk

s.t.:

K∑

k=1

Akxk = b

xk ∈ Pk, ∀k ∈ {1, . . . ,K} .
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Notice that P has a complicating constraint structure, due to the constraints
∑K

k=1Akxk = b. In
order to devise a decomposition method for this setting, let us first assume that we have available
for each of the sets Pk, k ∈ {1, . . . ,K}, (i) all extreme points, represented by xjk, ∀j ∈ Jk; and (ii)
all extreme rays wr

k, ∀r ∈ Rk. As one might suspect, this is in principle a demanding assumption,
but one that we will be able to drop later on.

Using the Resolution theorem (Theorem 12.1), we know that any element of Pk can be represented
as

xk =
∑

j∈Jk

λjkx
j
k +

∑

r∈Rk

θrkw
r
k, (12.1)

where λjk ≥ 0, ∀j ∈ Jk, are the coefficients of the convex combination of extreme points, meaning

that we also observe
∑

j∈Jk
λjk = 1, and θrk ≥ 0, ∀r ∈ Rk, are the coefficients of the conic

combination of the extreme rays.

Using the identity represented in (12.1), we can reformulate P onto the main problem PM as
follows.

(PM ) : min.

K∑

k=1


∑

j∈Jk

λjkc
⊤
k x

j
k +

∑

r∈Rk

θrkc
⊤
k w

r
k




s.t.:

K∑

k=1


∑

j∈Jk

λjkAkx
j
k +

∑

r∈Rk

θrkAkw
r
k


 = b (12.2)

∑

j∈Jk

λjk = 1, ∀k ∈ {1, . . . ,K} (12.3)

λjk ≥ 0, θrk ≥ 0,∀j ∈ Jk, r ∈ Rk, k ∈ {1, . . . ,K} .
Notice that (12.2) and (12.3) can be equivalently represented as

∑

k∈K


∑

j∈Jk

λjk

[
Akx

j
k

ek

]
+
∑

r∈Rk

θrk

[
Akw

r
k

0

]
 =

[
b

1

]
,

where ek is the unit vector (i.e., with 1 in the kth component, and 0 otherwise). Notice that PM

has as many variables as the number of extreme points and extreme rays of P , which is likely to
be prohibitively large.

However, we can still solve it if we use a slightly modified version of the revised simplex method.
To see that, let us consider that b is a m-dimensional vector. Then, a basis for PM would be of
size m+K, since we have the original m constraints plus one for each convex combination (arising
from each subproblem k ∈ K). This means that we are effectively working with (m+K)×(m+K)
matrices, i.e., the basic matrix B and its inverse B−1. Another element we need is the vector of
simplex multipliers p, which is a vector of dimension (m+K).

The issue with the representation adopted in PM arises when we are required to calculate the
reduced costs of all the nonbasic variables, since this is the critical issue for its tractability. That
is where the method provides a clever solution. To see that, notice that the vector p is formed by
components p⊤ = (q, r1, . . . , rK)⊤, where q represent the m dual variables associated with (12.2),
and rk, ∀k ∈ {1, . . . ,K}, are the dual variables associated with (12.3).

The reduced costs associated with the extreme-point variables λjk, j ∈ JK , is given by

c⊤k x
j
k − [q⊤ r1 . . . rK ]

[
Akx

j
k

ek

]
= (c⊤k − q⊤Ak)x

j
k − rk. (12.4)
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Analogously, the reduced cost associated with extreme-ray variables θrk, r ∈ Rk, is

c⊤k w
r
k − [q⊤ r1 . . . rK ]

[
Akw

r
k

0

]
= (c⊤k − q⊤Ak)w

r
k. (12.5)

The main difference is how we assess the reduced costs of the non-basic variables. Instead of
explicitly calculating the reduced costs of all variables, we instead rely on an optimisation-based
approach to consider them only implicitly. For that, we can use the subproblem

(Sk) : min.
x

ck = (c⊤k − q⊤Ak)xk

s.t.: xk ∈ Pk,

which can be solved in parallel for each subproblem k ∈ {1, . . . ,K}. The subproblem Sk is known
as the pricing problem. For each subproblem k = 1, . . . ,K, we have the following cases.

We might observe that ck = −∞. In this case, we have found an extreme ray wr
k satisfying

(c⊤k − q⊤Ak)w
r
k < 0. Thus, the reduced cost of the associated extreme-ray variable θrk is negative.

If that is the case, we must generate the column
(
Akw

r
k

0

)

associated with θrk and make it enter the basis.

Otherwise, being Sk bounded, i.e., ck < ∞, two other cases can occur. The first is the case in
which ck < rk. Therefore, we found an extreme point xjk satisfying (c⊤k − q⊤Ak)x

j
k− rk < 0. Thus,

the reduced cost associated with the extreme-point variable λjk is negative and, analogously, we
must generate the column (

Akx
j
k

ek

)

associated with λjk and make it enter the basis.

The last possible case is when we observe that rk < ck <∞. In this case, the pricing problem could
not identify a beneficial variable to be made basic, and therefore there is not an extreme point
or ray with negative reduced cost for subproblem k. If this condition holds for all k = 1, dots,K,
then all necessary extreme points and rays to characterise the region where the optimal extreme
point lies (or one of the extreme points, in the case of multiple solutions) have been found and the
optimal solution can be recovered.

Algorithm 7 summarises the Dantzig-Wolfe method. The two most remarkable features of the
method are (i) the fact that columns are not explicitly represented, but generated “on demand”
and (ii) the fact that the pricing problem requires the solution of another linear programming
problem. Analogously to the simplex method, it might be necessary to employ a “Phase 1”
approach to obtain an initial basis to start the algorithm.

Under a theoretical standpoint, the Dantzig-Wolfe method is equally efficient as the revised sim-
plex method. There are however two settings where the decomposition is most favourable. The
first, consists of applications in which the pricing problem can be solved in a closed-form, with-
out invoking a method to solve an additional linear programming subproblem. There are a few
examples in which this happens to be the case and certainly many others yet to be discovered.

Secondly, the memory requirements of the Dantzig-Wolfe decomposition makes it an interesting
approach for very large-scale problems. The original simplex method requires an amount of memory
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Algorithm 7 Dantzig-Wolfe decomposition

1: initialise. Let B be a BFS for PM and set l← 0.
2: repeat
3: for k ∈ {1, . . . ,K} do
4: solve Sk and let ck = minx {Sk}
5: if ck = −∞ then
6: obtain extreme ray wr

k and make Rl
k = Rl

k ∪ {wr
k}.

7: generate column (Akw
r
k, 0) to become basic.

8: else if ck < rk <∞ then

9: obtain extreme point xjk and make J l
k = J l

k ∪
{
xjk

}
.

10: generate column (Akx
j
k, ek) to become basic.

11: end if
12: end for
13: select one of the generated columns to replace one of the columns of B and update B

accordingly.
14: l← l + 1.
15: until ck > rk for all k ∈ {1, . . . ,K}
16: return B

space that is O((m+K×m0)
2), where m0 is the number of rows of Dk, for ∀k ∈ {1, . . . ,K}. This

is essentially the size of the inverse basic matrix B−1. In contrast, the Dantzig-Wolfe reformulation
requires O((m + K)2) + K × O(m2

0) of memory space, with the first term referring to the main
problem inverse basic matrix and the second to the pricing problems basic matrices. For example,
for a problem in which m = m0 and much larger than, say, K = 10, this implies that the memory
space required by the Dantzig-Wolfe reformulation is 100 times smaller, which can substantially
enlarge the range of large-scale problems that can be solved for the same amount of computational
resources available.

12.2.3 Delayed column generation

The term column generation can also refer to a related, and perhaps more widely known, variant
of the Dantzig-Wolfe decomposition. In that, the main problem PM is also repeatedly solved, each
time being incremented by an additional variable (or variables) associated with the column(s) iden-
tified with negative reduced costs in the pricing problem Sk, k ∈ {1, . . . ,K}. This is particularly
useful for problems with exponentially increasing number of variables, or with a large number of
variables associated with the complicating constraints (i.e., when m is a large number).

The (delayed) column generation method is presented in Algorithm 8. Notice in Line 6 the step that
is generating new columns in the main problem PM , represented in the statement X̃k ← X̃k∪

{
x∗lk
}
.

That is precisely when new variables λtk are introduced in the PM with coefficients represented by
the column 


ckx

∗l
k

Akx
∗l
k

ek


 .

Notice that the unbounded case is not treated to simplify the pseudocode, but could be trivially
adapted to return extreme rays to be used in PM , like the previous variant presented in Algorithm
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Algorithm 8 Column generation algorithm

1: initialise. Let X̃k ⊂ Xk, for k ∈ {1, . . . ,K}, and set l← 0.
2: repeat

3: solve P l
M to obtain λ∗l = (λ∗l1 , . . . , λ

∗l
K) and duals (q∗l,

{
r∗lk
}K
k=1

).
4: for k ∈ {1, . . . ,K} do
5: solve the pricing problem

x∗lk ← argmin
{
c⊤k xk − q∗l(Akxk)− r∗lk : xk ∈ Pk

}
.

6: if ck = c⊤k x
∗l
k − q∗l(Akx

∗l
k ) < r∗lk then X̃k ← X̃k ∪

{
x∗lk
}

7: end if
8: end for
9: l← l + 1.

10: until ck > rk for all k ∈ {1, . . . ,K}
11: return λ∗l.

7. Also, notice that the method is assumed to be initialised with a collection of columns (i.e.,
extreme points) X̃k, which can normally be obtained from inspection or using a heuristic method.

We finalise showing that the Dantzig-Wolfe and column generation methods can provide informa-
tion related to its own convergence. This means that we have access to an optimality bound that
can be used to monitor the convergence of the method and allow for a preemptive termination
given an acceptable tolerance. This bounding property is stated in Theorem 12.2.

Theorem 12.2. Suppose P is feasible with finite optimal value z. Let z be the optimal cost
associated with PM at a given iteration l of the Dantzig-Wolfe method. Also, let rk be the dual
variable associated with the convex combination of the kth subproblem and zk its optimal cost. Then

z +

K∑

k=1

(zk − rk) ≤ z ≤ z.

Proof. We know that z ≤ z, because a solution for PM is primal feasible and thus feasible for P .

Now, consider the dual of PM

(DM ) : max. q⊤b+
K∑

k=1

rk

s.t.: q⊤Akx
j
k + rk ≤ c⊤k xjk, ∀j ∈ Jk,∀k ∈ {1, . . . ,K}

q⊤Akw
r
k ≤ c⊤k wr

k, ∀r ∈ Rk,∀k ∈ {1, . . . ,K}

We know that strong duality holds, and thus z = q⊤b+
∑K

k=1 rk for dual variables (q, r1, . . . , rK).

Now, since zk are finite, we have minj∈Jk
(c⊤k x

j
k−q⊤Akx

j
k) = zk and minr∈Rk

(c⊤k w
r
k−q⊤Dkw

r
k) ≥ 0,

meaning that (q, z1, . . . , zK) is feasible to DM . By weak duality, we have that

z ≥ q⊤b+
K∑

k=1

zk = q⊤b+
K∑

k=1

rk +

K∑

k=1

(zk − rk) = z +

K∑

k=1

(zk − rk).
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12.3 Benders decomposition

Benders decomposition is an alternative decomposition method, suitable for settings in which
complicating variables are present. Differently than the Dantzig-Wolfe decomposition, the method
presumes from the get-go the employment of delayed constraint generation.

Benders decomposition has made significant inroads into practical applications. Not only is it
extensively used in problems related to multi-period decision-making under uncertainty, but it
is also available in the commercial solver CPLEX to be used directly, only requiring the user to
indicate (or annotate) which are the complicating variables.

12.3.1 Parametric optimisation problems

Before we proceed, let us develop the idea of having optimisation problems stated as functions of
the input data. Specifically, let

P (b) = {x ∈ Rn : Ax = b, x ≥ 0}

be defined as a function of the input vector b ∈ Rm. That is, P (b) is the set of feasible solutions
when the right-hand side is set to b. Then, let S = {b ∈ Rm : P (b) ̸= ∅} be the set of all vectors b
for which P has at least one feasible solution. Being so, we can restate the set S as

S = {Ax : x ≥ 0} .

That is, the set S is formed by the conic combination of the columns of A for which x is nonnegative
(or, in other words, that P (b) is feasible). Also, notice that this is a convex set, as discussed in
Section 6.2.1. For any b ∈ S, we can define the function

F (b) = min
x

{
c⊤x : x ∈ P (b)

}
, (12.6)

which takes as an argument b and returns the optimal value of the parametrised optimisation
problem. Notice that evaluating F requires that an optimisation problem is solved.

Now, let us assume that the dual feasibility set

SD =
{
p ∈ Rm : p⊤A ≤ c

}

is not empty. That implies that F (b) is finite for every b ∈ S since different b’s simply imply that
different objective functions p⊤b over SD are considered. Our main objective here is to understand
the structure of the function F : S → R.
Let b ∈ S be a particular b. Suppose that there exists a nondegenerate optimal BFS xB with
basis B. Then, we have that xB = B−1b, F (b) = c⊤BxB = c⊤BB

−1b and that all reduced costs are
nonnegative.

Now, if we change b to b such that the difference is sufficiently small, B−1b remains positive
and, consequently, xB remains a basic feasible solution. Furthermore, since b does not affect the
reduced costs (recall that our optimality condition is given by c = c⊤− c⊤BB−1A ≥ 0), they remain
nonnegative. Notice that this is the same argument we used in Section 6.1.3 when we discussed
changes in the input data in the context of sensitivity analysis.

The optimal value F (b) associated with this new b sufficiently close to b

F (b)− F (b) = cBB
−1(b− b) = p⊤(b− b)
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where p = cBB
−1 is the optimal solution of the dual problem

max. p⊤b

s.t.: p⊤A ≤ c.

This allows us to observe two important characteristics of F . First, in the vicinity of b, F (b) is
a linear function of b, Also, p represents a gradient of F . This, again, is an alternative view to
the conclusions we drew earlier in Section 6.1.3, and, in a way, further strengthens the idea of the
optimal dual variables p representing marginal values regarding changes in the components of b.

With the above, we can formalise an important result regarding the convexity of the function F (b).

Theorem 12.3 (Convexity of F (b)). The optimal value function F (b) is convex in b on the set S.

Proof. Let bi ∈ S and xi be their associated optimal solution, for i = 1, 2. Thus, F (bi) = c⊤xi, for
i = 1, 2. Let λ ∈ [0, 1]. The vector x = λx1 + (1− λ)x2 is nonnegative, and Ax = λb1 + (1− λ)b2.
Thus, x is a feasible solution when b is set to λb1 + (1− λ)b2. Therefore,

F (λb1 + (1− λ)b2) ≤ c⊤x = λc⊤x1 + (1− λ)c⊤x2 = λF (b1) + (1− λ)F (b2),

which is the definition of a convex function. The first inequality is valid because x is a feasible
solution for when b is set to λb1 + (1− λ)b2.

12.3.2 Properties of the optimal value function F (b)

Let us again consider the dual problem D

D : max. p⊤b

s.t.: p⊤A ≤ c,

which is again assumed to be feasible. For any b in S, F (b) is finite, and by strong duality
(cf. Theorem 5.3), we have that F (b) = p⊤b. Because of our outstanding assumption that A
has m linearly independent rows (and therefore, m linearly independent columns), Theorem 3.5
guarantees that the feasible region of D has at least one extreme point.

Let us suppose that we know all the extreme points p1, . . . , pK of D. As the optimal solution for
D must be an extreme point, we can redefine F as

F (b) = max
i=1,...,K

(pi)⊤b,∀b ∈ S. (12.7)

Specifically, F is the maximum of a finite collection of linear functions, and thus, piecewise linear.
Furthermore, within the region where F (b) is linear, or, as we have seen before, the change in b is
such that the corresponding optimal basis B of the primal does not change, F (b) = (pi)⊤b where
pi is the corresponding dual cost.

Finally, we must consider the lack of differentiability of F . Notice that specific values of b will
indicate the point at which the optimal basis B changes, which implies a change in p. These
“junctions” represent the points in which D has multiple (i.e., not unique) solutions, which, as we
have also seen, implies that the primal problem becomes degenerate.

Let us assume that we change b in a particular way, i.e., b = b + θd, where θ ∈ R. We can then
redefine F by letting

f(θ) = F (b+ θd).
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(p1)⊤(b+ θd)

(p2)⊤(b+ θd)

(p3)⊤(b+ θd)

θ1 θ2 θ

f(θ)

Figure 12.2: The optimal cost function F as a function of b in the direction d. The feasibility set
SD has three extreme points p1, p2, and p3, each associated with a hyperplane (pi)⊤(b+ θd)

From (12.7), we obtain
f(θ) = max

i=1,...,K
(pi)⊤(b− θd), b+ θd ∈ S

which represents the optimal cost as a function of the scalar θ. In fact, f(θ) represents a section
of the function F in the direction given by the vector d, which is thus also piecewise linear and
convex (and can be plotted). Figure 12.2 illustrates the function f projected onto direction d as a
function of θ.

To finalise, we return to one remaining issue associated with differentiability. Although p can be
seen as a gradient of F (b) at b, we know that F is not differentiable everywhere. To circumvent
that, we require a generalisation of the the concept of gradients, which is given by the notion of
subgradients.

Definition 12.4. Let F be a convex function on the convex set S. Let b ∈ S The vector p is a
subgradient of of F at b if

F (b) + p⊤(b− b) ≤ F (b),∀b ∈ S. (12.8)

Figure 12.3 illustrates the notion of a subgradient. Notice that, in general, the subgradient is a
singleton, composed only of the gradient (or normal vector) of the hyperplane, which is given by
the vector p. At the nondifferentiable points (the junctions), the subgradient comprises all hyper-
planes defined between the two hyperplanes intersecting (or all nonnegative linear combinations
of the normal vectors of the intersecting hyperplanes). For these values of b, we notice that the
dual problem has multiple solutions, implying that the referring BFS to the primal problem is
denegerate.

The last result we need is to show that the optimal solution of the dual problem p∗ is in fact a
subgradient of F (b) at b.

Theorem 12.5. Suppose that the linear programming problem P = min.
{
c⊤x : Ax = b, x ≥ 0

}

is feasible and the optimal cost is finite. Then, a vector p ∈ Rm is an optimal solution to the dual
problem if and only if it is a subgradient of the optimal value function F at b.

Proof. Recall that F is defined on the set S = {b ∈ Rm : P (b) ̸= ∅}, and that P (b) = {x ∈ Rn : Ax = b, x ≥ 0}.
Suppose p is an optimal solution to the dual problem D. Then, strong duality implies that
p⊤b = F (b). Consider now an arbitrary b ∈ S. For any feasible solution x ∈ P (b), we have from
weak duality that

p⊤b ≤ c⊤x⇒ p⊤b ≤ min
x∈P (b)

c⊤x = F (b).
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Notice that this implies that p⊤b− p⊤b ≤ F (b)−F (b), which in turn yields that p is a subgradient
of F at b since it rearranges to

F (b) + p⊤(b− b) ≤ F (b).
Let us consider the converse. Assume that p is a subgradient of F at b. Thus, we have

F (b) + p⊤(b− b) ≤ F (b), ∀b ∈ S. (12.9)

Let choose an x ≥ 0, and let b = Ax, meaning that x ∈ P (b) and that F (b) ≤ c⊤x. Using (12.9),
we obtain

p⊤Ax = p⊤b ≤ F (b)− F (b) + p⊤b ≤ c⊤x− F (b) + p⊤b.

Since x ≥ 0, this implies that p⊤A ≤ c, showing that p is a dual feasible solution. Also, for x = 0,
we obtain F (b) ≤ p⊤b. Now, using weak duality, we have that a dual feasible solution p′ satisfies
(p′)⊤b ≤ F (b). Combining the two, we show that p is dual optimal, since

(p′)⊤b ≤ p⊤b.

F (b) + p⊤(b− b)
F (b) + p⊤(b− b)

b bb b

F (b) F (b)

Figure 12.3: The subgradients of the function F at b. On the left, the unique subgradient of F at
b is the gradient of the affine function F (b) + p⊤(b − b). On the right, the gradient of the affine
function F (b) + p⊤(b− b) at b is contained in a subgradient for F at b.

Therefore, more generally, we can say that at the breakpoints, F has multiple subgradients while
everywhere else, the subgradients are unique and correspond to the gradients of F .

12.3.3 Benders decomposition

Let us now return to the Benders decomposition method. Once again, let the problem P be defined
as

(P ) : min.
x,y

c⊤x+

K∑

k=1

f⊤k yk

Ax = b

Ckx+Dkyk = ek, k ∈ {1, . . . ,K}
x ≥ 0, yk ≥ 0, k ∈ {1, . . . ,K} .
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Notice that this is equivalent to the problem P ′ presented in Section 12.1, but with a notation
modified to make it easier to track how the terms are separated in the process. We can see that P
has a set of complicating variables x, which becomes obvious when we recast the problem as

c⊤x + f⊤1 y1 + f⊤2 y2 + . . . + f⊤k yk
Ax = b

C1x + D1y1 = e1

C2x + D2y2 = e2
...

...
. . .

...

CKx + Dkyk = eK

x y1 y2 . . . yk ≥ 0

This structure is sometimes referred to as block-angular, referring to the initial block of columns
on the left (as many as there are components in x) and the diagonal structure representing the
elements associated with the variables y. In this case, notice that if the variable x were to be
removed, or fixed to a value x = x, the problem becomes separable in K independent parts

(Sk) : min.
y

f⊤k yk

s.t.: Dkyk = ek − Ckx

yk ≥ 0.

Notice that these subproblems k ∈ {1, . . . ,K} can be solved in parallel and, in certain contexts,
might even have analytical closed-form solutions. The part missing is the development of a coor-
dination mechanism that would allow for iteratively updating the solution x based on information
emerging from the solution of the subproblems k ∈ {1, . . . ,K}.
To see how that can be achieved, let us reformulate P as

(PR) : min.
x

c⊤x+

K∑

k=1

zk(x)

s.t.: Ax = b

x ≥ 0.

where, for k ∈ {1, . . . ,K},

zk(x) = min.
y

{
f⊤k yk : Dkyk = ek − Ckx

}
.

Notice the resemblance between zk(x) and the optimal value function F (b) introduced in Section
12.3.1. This is because the subproblems become parametric optimisation problems but as a function
of x. That is, in this case, the subproblems are assumed to have x = x set as a parameter.
Analogously, evaluating zk(x) requires solving the subproblem Sk, which, in turn, depends on x.

The Benders decomposition works by iteratively constructing the optimal value function. Instead
of assuming that all dual extreme points are known, we collect them iteratively, forming an approx-
imation of the optimal value function zk(x) that becomes increasingly precise as we collect more
such extreme points. And, to find new dual extreme points, we can use our current approximation
of the optimal value function zk(x) in PR, which, once solved, returns us a new x to be used for
finding a new dual extreme point. Notice that this procedure is akin to iteratively finding the
linear segments that form the optimal value functions zk(x).
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To formalise the discussion above, let us first consider the dual formulation of the subproblems
k ∈ {1, . . . ,K}, which is given by

(SD
k ) : zDk = max. p⊤k (ek − Ckx)

s.t.: p⊤k Dk ≤ fk.

Next, let us denote the feasibility set of SD
k as

Pk =
{
p : p⊤Dk ≤ fk

}
,∀k ∈ {1, . . . ,K} , (12.10)

and assume that each Pk ̸= ∅ with at least one extreme point1. Relying on the resolution theorem
(Theorem 12.1), we know that Pk can be represented by its extreme points pik, i ∈ Ik and extreme
rays wr

k, r ∈ Rk.

As we assume that Pk ̸= ∅, two cases can occur when we solve SD
k , k ∈ {1, . . . ,K}. Either SD

k is
unbounded, meaning that the relative primal subproblem is infeasible, or SD

k is bounded, meaning
that zDk <∞.

From the first case, we can use Theorem 6.6 to conclude that primal feasibility (or a bounded dual
value zDk <∞) can only be attained if and only if

(wr
k)

⊤(ek − Ckx) ≤ 0, ∀r ∈ Rk. (12.11)

Furthermore, we know that if SD
k has a solution, that must lie on a vertex of Pk. So, having

available the set of all extreme vertices pik, i ∈ Ik, we have that if one can solve SD
k , it can be

equivalently represented as

(SD
k ) : zk(x) = max

i∈Ik
(pik)

⊤(ek − Ckx), (12.12)

which can be equivalently reformulated as

min. θk (12.13)

s.t.: θk ≥ (pik)
⊤(ek − Ckx), ∀i ∈ Ik. (12.14)

Again, notice that (12.12) is equivalent to (12.7). Combining (12.11)–(12.14), we can reformulate
PR into a single-level equivalent form

(PR) :min.
x

c⊤x+

K∑

k=1

θk

s.t.: Ax = b

(pik)
⊤(ek − Ckx) ≤ θk, ∀i ∈ Ik,∀k ∈ {1, . . . ,K} (12.15)

(wr
k)

⊤(ek − Ckx) ≤ 0, ∀r ∈ Rk,∀k ∈ {1, . . . ,K} (12.16)

x ≥ 0.

Notice that, just like the reformulation used for the Dantzig-Wolfe method presented in Section
12.2, the formulation of PR is of little practical use since it requires the complete enumeration of
(a typically prohibitive) number of extreme points and rays and is likely to be computationally
intractable due to the large number of associated constraints. To address this issue, we can
employ delayed constraint generation and iteratively generate only the constraints we observe to

1We have discussed in Section 12.3.2 why we can assume that Pk has at least one extreme point
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be violated. Notice that this can be alternatively interpreted as the idea of iteratively generating
the segments of the optimal value function zk(x).

Following this idea, at a given iteration l, we have at hand a relaxed main problem P l
M , which

comprises only some of the constraints associated with the dual extreme points and rays obtained
until iteration l. The relaxed main problem can be stated as

(P l
M ) : zlPM

= min.
x

c⊤x+

K∑

k=1

θk

s.t.: Ax = b

(pik)
⊤(ek − Ckx) ≤ θk, ∀i ∈ I lk,∀k ∈ {1, . . . ,K}

(wr
k)

⊤(ek − Ckx) ≤ 0, ∀r ∈ Rl
k,∀k ∈ {1, . . . ,K}

x ≥ 0,

where I lk ⊆ Ik, ∀k ∈ {1, . . . ,K} represent subsets of extreme points pik of Pk, and R
l
k ⊆ Rk subsets

of extreme rays wr
k of Pk.

We can iteratively obtain these extreme points and rays from the subproblems Sk, k ∈ {1, . . . ,K}.
To see that, let us first define that, at iteration l, we solve the main problem P l

M and obtain a
solution

argmin
x,θ

{
P l
M

}
= (xl, θ

l

1, . . . θ
l

K).

We can then solve the subproblems Sl
k, k ∈ {1, . . . ,K}, for that fixed solution xl and then observe

if we can find additional constraints that were to be violated if they had been in the relaxed main
problem in the first place. In other words, we can identify if the solution xl allows for identifying
additional extreme points pik or extreme rays wr

k of Pk that were not yet included in P l
M .

Another way to interpret this notion of violation is to again think of the optimal value function.
When we solve Sl

k, for each k ∈ {1, . . . ,K}, we are obtaining a “true“ (as opposed to approxi-
mate) evaluation of the optimal value function zk(x

l) which, when compared against the working
approximation of zk (valued as θk) in the main problem, provides a value that is greater than that
of θk, that is,

θk < (pik)
⊤(ek − Ckx

l). (12.17)

This implies that the approximation of the optimal value function has a segment missing at xl,
which is precisely the one given by (pik)

⊤(ek − Ckx).

Figure 12.4 illustrates how the optimal value function approximation is iteratively constructed.

To identify those violated constraints, first recall that the subproblem (in its primal form) is given
by

(Sl
k) : min. f⊤y

s.t.: Dkyk = ek − Ckx
l

yk ≥ 0.

Then, two cases can lead to generating violated constraints that must be added to the relaxed
primal problem to form P l+1

M . The first is when Sl
k is feasible. In that case, a dual optimal basic

feasible solution pilk is obtained. If (pilk )
⊤(ek − Ckx

l) > θ
l

k, then we can conclude that we just
formed a violated constraint of the form of (12.15). The second case is when Sl

k is infeasible, then
an extreme ray wrl

k of Pk is available, such that (wrl
k )⊤(ek − Ckx

l) > 0, violating (12.16).
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(p1k)
⊤(ek − Ckx)

(p2k)
⊤(ek − Ckx)

(p1k)
⊤(ek − Ckx)

(p2k)
⊤(ek − Ckx)

(p3k)
⊤(ek − Ckx)(p∗k)

⊤(ek − Ckx)

x3 x4

θ
3

θ
4z(x3)

x x

zk(x) zk(x)

Figure 12.4: zk(x) is described by 3 line segments. At iteration l = 3, two are available. The

solution to P 3
M returns θ

3
, which is lower than z(x3), obtained solving SD

k for xl. The solution
p∗k = p3k from z(xl) defines the missing segment (p∗k)

⊤(ek − Ckx). A new optimality cut is added

and in iteration l = 4, x4 is obtained from solving P 4
M . Notice that we would have θ

4
= z(x4),

meaning that the algorithm terminates.

Notice that the above can also be accomplished by solving the dual subproblems SD
k , k ∈ {1, . . . ,K},

instead. In that case, the extreme point pilk is immediately available and so are the extreme rays
wrl

k in case of unboundedness.

Algorithm 9 presents a pseudocode for the Benders decomposition. Notice that the method can
benefit in terms of efficiency from the use of dual simplex, since we are iteratively adding violated
constraints to the relaxed main problem P l

M . Likewise, the dual of the subproblem Sl
k, S

Dl
k has only

the objective function coefficients being modified at each iteration and, in light of the discussion
in Section 6.1.3, can also benefit from the use of dual simplex. Furthermore, the loop represented
by Line 4 can be parallelised to provide further computational performance improvements.

Algorithm 9 Benders decomposition

1: initialise. Let P l
i =W l

j = ∅, for k ∈ {1, . . . ,K}, and set l← 0.
2: repeat

3: solve P l
M to obtain

(
xl,
{
θ
l

k

}K

k=1

)
.

4: for k ∈ {1, . . . ,K} do
5: solve SDl

k .
6: if SDl

k is unbounded then
7: obtain extreme ray wk

j and make W l =W l ∪
{
wk

j

}
.

8: else
9: obtain extreme point pki and P l = P l ∪

{
pki
}

10: end if
11: end for
12: l = l + 1.
13: until (pik)

⊤(ek − Ckx) ≤ θk, ∀k ∈ {1, . . . ,K}
14: return

(
xl,
{
θ
l

k

}K

k=1

)

Notice that the algorithm terminates if no violated constraint is found. This in practice implies
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that (pik)
⊤(ek−Ckx) ≤ θk for all k ∈ {1, . . . ,K}, and thus (x,

{
θk
}K
k=1

) is optimal for P . In a way,

if one considers the dual version subproblem, SD
k , one can notice that it is acting as an implicit

search for values of pik that can make (pik)
⊤(ek − Ckx) larger than θk, meaning that the current

solution x violates (12.15) and is thus not feasible to P l
M .

Also, every time one solves P l
M , a dual (lower for minimisation) bound LBl = zlPM

is obtained. This
is simply because the relaxed main problem is a relaxation of the problem P , i.e., it contains less
constraints than the original problem P . A primal (upper) bound can also be calculated at every
iteration, which allows for keeping track of the progress of the algorithm in terms of convergence
and preemptively terminate it at any arbitrary optimality tolerance. That can be achieved by
setting

UBl = min

{
UBl−1, c⊤xl +

K∑

k=1

f⊤ylk

}

= min

{
UBl−1, zlPM

−
K∑

k=1

θ
l

k +

K∑

k=1

zDl
k

}
,

where (xl,
{
θ
l

k

}K

k=1
) = argminx,θ

{
P l
M

}
, ylk = argminy

{
Sl
k

}
, and zDl

k is the objective function

value of the dual subproblem SD
k at iteration l. Notice that, differently from the lower bound LBl,

there are no guarantees that the upper bound UBl will decrease monotonically. Therefore, one
must compare the bound obtained at a given iteration l using the solution (xl, yl1, . . . , y

l
K) against

an incumbent (or best-so-far) bound UBl−1.
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12.4 Exercises

Exercise 12.1: Dantzig-Wolfe decomposition

Consider the following linear programming problem:

min. −x12 −x22 −x23
s.t.: x11 +x12 +x13 = 20

x21 +x22 +x23 = 20

−x11 −x21 = -20

−x12 −x22 = -10

−x13 −x23 = -10

x11 +x23 ≤ 15

x11, x12, x13, x21, x22, x23 ≥ 0

We wish to solve this problem using Dantzig-Wolfe decomposition, where the constraint x11+x23 ≤
15 is the only “coupling” constraint and the remaining constraints define a single subproblem.

(a) Consider the following two extreme points for the subproblem:

x1 = (20, 0, 0, 0, 10, 10),

and

x2 = (0, 10, 10, 20, 0, 0).

Construct a main problem in which x is constrained to be a convex combination of x1 and
x2. Find the optimal primal and dual solutions for the main problem.

(b) Using the dual variables calculated in part a), formulate the subproblem and find its optimal
solution.

(c) What is the reduced cost of the variable λ3 associated with the extreme point x3 obtained
from solving the subproblem in part b)?

(d) Compute a lower bound on the optimal cost.

Exercise 12.2: Parametric optimization

Recall the paint factory problem

max. z = 5x+ 4y (12.18)

s.t.: 6x+ 4y ≤ 24 (12.19)

x+ 2y ≤ 6 (12.20)

y − x ≤ 1 (12.21)

y ≤ 2 (12.22)

x, y ≥ 0. (12.23)
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(a) Formulate a parametric optimization problem F (x), maximizing the profit from selling inte-
rior paint (y) given the amount of exterior paint (x) produced. The solution to this problem
must be feasible to the full paint factory problem.

(b) Solve the paint factory problem using Benders decomposition. Use x as the main problem
variable and y as the subproblem variable.

Exercise 12.3: Benders decomposition

Consider a wholesaler company planning to structure its supply chain to the retailers of a given
product. The company needs to distribute the production from many suppliers to a collection of
distribution points from which the retailers can collect as much product as they need for a certain
period. By default, a pay-as-you-consume contract between wholesaler and retailers is signed and,
therefore, the demand at each point is unknown at the moment of shipping. Consider there is no
penalty for any unfulfilled demand and any excess must be discarded from one period to the other.
The following parameters are given:

• Bi: production cost at supplier i

• Ci: production capacity at supplier i

• Djs: total orders from distribution point j in scenario s

• Tij : transportation cost between i and j

• Rj : revenue for sale at distribution point j

• Wj : disposal cost at distribution point j

Let the variables be:

• pi: production at supplier i

• tij : amount of products transported between i and j

• ljs: amount of products sold from the distribution point j in scenario s

• wjs: amount of products discarded from the distribution point j in scenario s

• rj : amount pre-allocated in the distribution point j
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The model for minimising the cost (considering revenue as a negative cost) is given below,

min.
∑

i∈I

Bipi +
∑

i∈I,j∈J

Tijtij +
∑

s∈S

Ps


∑

j∈J

(−Rj ljs +Wjwjs)




s.t.: pi ≤ Ci, ∀i ∈ I
pi =

∑

j∈J

tij , ∀i ∈ I

rj =
∑

i∈I

tij , ∀j ∈ J

rj = ljs + wjs, ∀j ∈ J, ∀s ∈ S
ljs ≤ Djs, ∀j ∈ J, ∀s ∈ S
pi ≥ 0, ∀i ∈ I
rj ≥ 0, ∀j ∈ J
tij ≥ 0, ∀i ∈ I, ∀j ∈ J
ljs, wjs ≥ 0, ∀j ∈ J, ∀s ∈ S.

Solve an instance of the wholesaler’s distribution problem proposed using Benders decomposition.
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Chapter 13

Introduction

13.1 What is optimisation?

An optimisation is one of these words that has many meanings, depending on the context you
take as a reference. In the context of this course, optimisation refers to mathematical optimisation,
which is a discipline of applied mathematics.

In mathematical optimisation, we build upon concepts and techniques from calculus, analysis,
linear algebra, and other domains of mathematics to develop methods that allow us to find values
for variables within a given domain that maximise (or minimise) the value of a function. In specific,
we are trying to solve the following general problem:

minf(x) (13.1)

s.t.x ∈ X.

In a general sense, these problems can be solved by employing the following strategy:

1. Analysing properties of functions under specific domains and deriving the conditions that
must be satisfied such that a point x is a candidate optimal point.

2. Applying numerical methods that iteratively searches for points satisfying these conditions.

This idea is central in several domains of knowledge, and very often are defined under area-specific
nomenclature. Fields such as economics, engineering, statistics, machine learning and, perhaps
more broadly, operations research, are intensive users and developers of optimisation theory and
applications.

13.1.1 Mathematical programming and optimisation

Operations research and mathematical optimisation are somewhat intertwined, as they both were
born around a similar circumstance.

I like to separate mathematical programming from (mathematical) optimisation. Mathematical
programming is a modelling paradigm, in which we rely on (very powerful, I might add) analogies
to model real-world problems. In that, we look at a given decision problem considering that

• variables represent decisions, as in a business decision or a course of action. Examples include
setting the parameter of (e.g., prediction) model, production systems layouts, geometries of
structures, topologies of networks, and so forth;

207
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• domain represents business rules or constraints, representing logic relations, design or engi-
neering limitations, requirements, and such;

• function is an objective function that provides a measure of solution quality.

With these in mind, we can represent the decision problem as a mathematical programming model
of the form of (13.1) that can be solved using optimisation methods. From now on, we will refer to
this specific class of models as mathematical optimisation models, or optimisation models for short.
We will also use the term to solve the problem to refer to the task of finding optimal solutions to
optimisation models.

This course is mostly focused on the optimisation techniques employed to find optimal solutions
for these models. As we will see, depending on the nature of the functions f and g that are used to
formulate the model, some methods might be more or less appropriate. Further complicating the
issue, for models of a given nature, there might be alternative algorithms that can be employed
and with no generalised consense whether one method is generally better performing than another.

13.1.2 Types of mathematical optimisation models

In general, the simpler the assumptions on the parts forming the optimisation model, the more
efficient are the methods to solve such problems.

Let us define some additional notation that we will use from now on. Consider a model in the
general form

min. f(x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X,

where f : Rn → R is the objective function, g : Rm → Rm is a collection ofm inequality constraints
and h : Rn → Rl is a collection of l equality constraints.

Remark: in fact, every inequality constraint can be represented by an equality constraint by
making hi(x) = gi(x) + xn+1 and augmenting the decision variable vector x ∈ Rn to include the
slack variable xn+1. However, since these constraints are of very different nature, we will explicitly
represent both whenever necessary.

The most general types of models are the following. We also use this as an opportunity to define
some (admittedly confusing) nomenclature from the field of operations research that we will be
using in these notes.

1. Unconstrained models: in these, the set X = Rn and m = l = 0. These are prominent in,
e.g., machine learning and statistics applications, where f represents a measure of model
fitness or prediction error.

2. Linear programming (LP): presumes linear objective function. f(x) = c⊤x and constraints
g and h affine, i.e., of the form a⊤i x − bi, with ai ∈ Rn and b ∈ R. Normally, X =
{x ∈ Rn | xj ≥ 0, j = 1, . . . , n} enforce that decision variables are constrained to be the non-
negative orthant.

3. Nonlinear programming (NLP): some or all of the functions f , g, and h are nonlinear.
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4. Mixed-integer (linear) programming (MIP): consists of an LP in which some (or all) of the
variables are constrained to be integers. In other words, X ⊆ Rk × Zn−k. Very frequently,
the integer variables are binary terms, i.e., xi ∈ {0, 1}, for i = 1, . . . , n− k and are meant to
represent true-or-false or yes-or-no conditions.

5. Mixed-integer nonlinear programming (MINLP): are the intersection of MIPs and NLPs.

Remark: notice that we use the vector notation c⊤x =
∑

j∈J cjxj , with J = {1, . . . , N}. This is
just a convenience for keeping the notation compact.

13.2 Examples of applications

We now discuss a few examples to illustrate the nature of the problems to which we will develop
solution methods and their applicability to real-world contexts.

13.2.1 Resource allocation and portfolio optimisation

In a general sense, any mathematical optimisation model is an instantiation of the resource allo-
cation problem. A resource allocation problem consists of how to design an optimal allocation of
resources to tasks, such that a given outcome is optimised.

Classical examples typically include production planning settings, in which raw materials or labour
resources are inputted into a system and a collection of products, a production plan, results from
this allocation. The objective is to find the best production plan, that is, a plan with the maximum
profit or minimum cost. Resource allocation problems can also appear in a less obvious setting,
where the resources can be the capacity of transmission lines in an energy generation planning
setting, for example.

Let i ∈ I = {1, . . . ,M} be a collection of resources and j ∈ J = {1, . . . , N} be a collection of
products. Suppose that, to produce one unit of product j, a quantity aij of resource i is required.
Assume that the total availability of resource i is bi and that the return per unit of product j is
cj .

Let xj be the decision variable representing total of product j produced. The resource allocation
problem can be modelled as

max.
∑

j∈J

cjxj (13.2)

s.t.:
∑

j∈J

aijxj ≤ bi, ∀i ∈ I (13.3)

xj ≥ 0, ∀j ∈ J. (13.4)

Equation (13.2) represents the objective function, in which we maximise the total return obtained
from a given production plan. Equation (13.3) quantify the resource requirements for a given
production plan and enforce that such a requirement does not exceed the resource availability.
Finally, constraint (13.4) defines the domain of the decision variables.

Notice that, as posed, the resource allocation problem is linear. This is perhaps the most basic, and
also most diffused setting for optimisation models for which very reliable and mature technology
is available. In this course, we will concentrate on methods that can solve variants of this model
in which the objective function and/or the constraints are required to include nonlinear terms.
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One classic variant of resource allocation that include nonlinear terms is the portfolio optimisation
problem. In this, we assume that a collection of assets j ∈ J = {1, . . . , N} are available for
investment. In this case, capital is the single (actual) resource to be considered. Each asset has
random return Rj , with an expected value E[Rj ] = µj . Also, the covariance between two assets
i, j ∈ J is given by σij = E[(Ri − µi)(Rj − µj)], which can be denoted as the covariance matrix

Σ =




σ11 . . . σ1N
...

. . .
...

σN1 . . . σNN




Markowitz (1952) proposed using x⊤Σx as a risk measure that captures the variability in the return
of the assets. Given the above, the optimisation model that provides the investment portfolio with
the least risk, given a minimum requirement ϵ in terms of expected returns is given by

min. x⊤Σx (13.5)

s.t.: µ⊤x ≥ ϵ (13.6)

0 ≤ xj ≤ 1, ∀j ∈ J. (13.7)

Objective function (13.5) represents the portfolio risk to be minimised, while constraint (13.6)
enforces that the expected return must be at least ϵ. Notice that ϵ can be seen as a resource
that has to be (at least) completely depleted if one wants to do a parallel with the resource
allocation structure discussed early. Constraint (13.7) defined the domain of the decision variables.
Notice how the problem is posed in a scaled form, where xj ∈ [0, 1] represents a percentage of a
hypothetical available capital for investment.

In this example, the problem is nonlinear due to the quadratic nature of the objective function
x⊤Σx =

∑
i,j∈J σijxixj . As we will see later on, there are efficient methods that can be employed

to solve quadratic problems like this.

13.2.2 The pooling problem: refinery operations planning

The pooling problem is another example of a resource allocation problem that naturally presents
nonlinear constraints. In this case, the production depends onmixing operations, known as pooling,
to obtain certain product specification for a given property.

As an illustration, suppose that products j ∈ J = {1, . . . , N} are produced by mixing byproducts
i ∈ Ij ⊆ I = {1, . . . ,M}. Assume that the qualities of byproducts qi are known and that there is
no reaction between byproducts. Each product is required to have a property value qj within an
acceptable range [q

j
, qj ] to be classified as product j. In this case, mass and property balances are

calculated as

xj =
∑

i∈Ij

xi, ∀j ∈ J (13.8)

qj =

∑
i∈Ij

qixi

xj
, ∀j ∈ J. (13.9)

These can then incorporated into the resource allocation problem accordingly. One key aspect
associated with pooling problem formulations is that the property balances represented by (13.9)
define nonconvex feasibility regions. As we will see later, convexity is a powerful property that al-
lows for developing efficient solution methods and its absence typically compromises computational
performance and tractability in general.
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13.2.3 Robust optimisation

Robust optimisation is a subarea of mathematical programming concerned with models that sup-
port decision-making under uncertainty. In specific, the idea is to devise a formulation mechanism
that can guarantee feasibility of the optimal solution in face of variability, ultimately taking a
risk-averse standpoint.

Consider the resource allocation problem from Section 13.2.1. Now, suppose that the parameters
ãi ∈ RN associated with a given constraint i ∈ I = {1, . . . ,M} are uncertain with a unknown
probability distribution. The resource allocation problem can then be formulated as

max. c⊤x

s.t.: ã⊤i x ≤ bi, ∀i ∈ I
xj ≥ 0, ∀j ∈ J.

Let us assume that the only information available are observations âi, from which we can estimate a
nominal value ai. This is illustrated in Figure 13.1, in which 100 random observations are generated
for ãi = [ãi1, ãi2] with ãi1 ∼ Normal(10, 2) and ãi2 ∼ Normal(5, 3) for a single constraint i ∈ I. The
nominal values are assumed to have coordinates given by the average values used in the Normal
distributions. Our objective is to develop a model that incorporates a given level of protection in

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2

Distribution of (a1, a2)
Observations
Nominal value

Figure 13.1: One hundred random realisations for ãi.

terms of feasibility guarantees. That is, we would like to develop a model that provides solutions
that are guaranteed to remain feasible if the realisation of ãi falls within an uncertainty set ϵi of
size controlled by the parameter Γi. The idea is that the bigger the uncertainty set ϵi, the more
robust is the solution, which typically comes at the expense of accepting solutions with expected
worse performance.

The tractability of robust optimisation models depends on the geometry of the uncertainty set
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employed. Let us assume in what follows that

ϵi = {ai + Piu | ∥u∥2 ≤ Γi} (13.10)

is an ellipsoid with a characteristic matrix Pi and Γi scales the ellipsoid size. The singular values
and corresponding left-singular vectors of Pi describe how the ellipsoid extends from ai in different
directions. In particular, for any ellipsoid ϵi, the characteristic matrix Pi can be chosen to be
symmetric and positive definite (which will be our case, as we will see next), in which case the
singular values and singular vectors of Pi coincide with its eigenvalue and eigenvectors.

Remark: an alternative (perhaps more frequent) characterisation of an ellipsoid ϵ ⊂ Rn centred
at x is given by ϵ =

{
x ∈ Rn | (x− x)⊤A(x− x) = Γ2

}
. By making A = (PP⊤)−1, we recover the

representation in (13.10), assuming P is invertible.

We can now formulate the robust counterpart, which consists of a risk-averse version of the original
resource allocation problem. In that, we try to anticipate the worst possible outcome and make
decisions that are both optimal and guarantee feasibility in this worst-case sense. This standpoint
translates into the following optimisation model.

max. c⊤x

s.t.: max.
ai∈ϵi

{
a⊤i x

}
≤ bi, ∀i ∈ I (13.11)

xj ≥ 0,∀j ∈ J.

Notice how the constraint (13.11) has an embedded optimisation problem, turning into a bi-level
optimisation problem. This highlights the issue associated with tractability, since solving the whole
problem strongly depends on deriving tractable equivalent reformulations.

Assuming that the uncertainty set ϵi is an ellipsoid, the following result holds.

max
ai∈ϵi

{
a⊤i x

}
= a⊤i x+max

u

{
u⊤Pix : ∥u∥2 ≤ Γi

}
(13.12)

= a⊤i x+ Γi∥Pix∥2. (13.13)

In (13.12), we recast the inner problem in terms of the ellipsoidal uncertainty set, ultimately
meaning that we recast the inner maximisation problem in terms of variable u. Since the only
constraint is ∥u∥2 ≤ Γi, in (13.13) we can derive a closed form for the inner optimisation problem.

With the closed form derived in (13.13), we can reformulate the original bi-level problem as a
tractable single-level problem of the following form

max. c⊤x

s.t.: a⊤i x+ Γi∥Pix∥2 ≤ bi, ∀i ∈ I (13.14)

xj ≥ 0, ∀j ∈ J.

Notice how the term Γi∥P⊤
i x∥2 creates a buffer for constraint (13.14), ultimately preventing the

complete depletion of the resource. Clearly, this will lead to a suboptimal solution when compared
to the original deterministic at the expense of providing protection against deviations in coefficients
ai. This difference is often referred to as the price of robustness.

In Figure 13.2, we show the ellipsoidal sets for two levels of Γi for a single constraint i. We define

ϵi =

{[
10

5

]
+

[
2 0

0 3

][
u1

u2

]}
(13.15)
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Figure 13.2: One hundred random realisations for ãi.

using the average and standard deviation of the original distributions that generated the observa-
tions. We plot the ellipsoids for Γ1 = 1 and Γ2 = 1.5, illustrating how the protection level increases
as Γ increases. This can be inferred since the uncertainty set covers more of the observations and
the formulation is such that feasibility is guaranteed for any observation within the uncertainty
set.

13.2.4 Classification: support-vector machines

This is an example in which the resource allocation structure within the optimisation model is not
as obvious. Suppose we are given a data set D ⊂ Rn with |D| = N +M that can be divided into
two disjunct sets I− = {x1, . . . , xN} and I+ = {x1, . . . , xM}.
Each element in D is an observation of a given set of n features with values represented by a x ∈ Rn

that has been classified as belonging to set I− and I+. Because of the availability of labelled data,
classification is said to be an example of supervised learning in the field of machine learning.

Figure 13.3 illustrates this situation for n = 2, in which the orange dots represent points classified
as belonging to I− (negative observations) and the blue dots represent points classified as belonging
to I+ (positive observations).

Our task is to obtain a function f : Rn → R from a given family of functions that is capable of,
given an observed set of features x̂, classify whether it belongs to I− or I+. In other words, we
want to calibrate f such that

f(xi) < 0, ∀xi ∈ I−, and f(xi) > 0, ∀xi ∈ I+. (13.16)

This function would then act as a classifier that could be employed to any new observation x̂
made. If f is presumed to be an affine function of the form f(x) = a⊤x − b, then we obtain a
linear classifier.
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Figure 13.3: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue).

Our objective is to obtain a ∈ Rn and b ∈ R such that misclassification error is minimised. Let us
define the error measure as

e−(xi ∈ I−; a, b) :=
{
0, if a⊤xi − b ≤ 0,

a⊤xi − b, if a⊤xi − b > 0.

e+(xi ∈ I+; a, b) :=
{
0, if a⊤xi − b ≥ 0,

b− a⊤xi, if a⊤xi − b < 0.

Using this error measure, we can define constraints that capture deviation on each measure by
means of nonnegative slack variables. Let ui ≥ 0 for i = 1, . . . , N and vi ≥ 0 for i = 1, . . . ,M be
slack variables that measure the misclassification error for xi ∈ I− and xi ∈ I+, respectively.
The optimisation problem that finds optimal parameters a and b can be stated as

min.

M∑

i=1

ui +

N∑

i=1

vi (13.17)

s.t.: a⊤xi − b− ui ≤ 0, i = 1, . . . ,M (13.18)

a⊤xi − b+ vi ≥ 0, i = 1, . . . , N (13.19)

∥a∥2 = 1 (13.20)

ui ≥ 0, i = 1, . . . , N (13.21)

vi ≥ 0, i = 1, . . . ,M (13.22)

a ∈ Rn, b ∈ R. (13.23)

The objective function (13.17) accumulates the total misclassification error. Constraint (13.18) al-
lows for capturing the misclassification error for each xi ∈ I−. Notice that ui = max

{
0, a⊤xi − b

}
=

e−(xi ∈ I−; a, b). Likewise, constraint (13.19) guarantees that vi = e+(xi ∈ I+; a, b). To avoid
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trivial solutions in which (a, b) = (0, 0), the normalisation constraint ∥a∥2 = 1 is imposed in
constraint (13.20), which turns the model nonlinear.

Solving the model (13.17)–(13.23) provides optimal (a, b) which translates into the classifier rep-
resented as the green line in Figure 13.4.
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0
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15

x 2

Pos. obs.
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Classifier

Figure 13.4: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue) with
a classifier (green).

A variant referred to as robust classifier penalises not only the the misclassification error, but also
the observations within a given slab S =

{
x ∈ Rn | −1 ≤ a⊤x− b ≤ 1

}
. Notice that, being the

two lines defined by f−(x) : a⊤x − b = −1 and f+(x) : a⊤x − b = +1, the distance between the
two hyperplanes is given by 2

∥a∥2
.

Accordingly, we redefine our error measures as follows.

e−(xi ∈ I−; a, b) :=
{
0, if a⊤xi − b ≤ −1,
|a⊤xi − b|, if a⊤xi − b > −1.

e+(xi ∈ I+; a, b) :=
{
0, if a⊤xi − b ≥ 1,

|b− a⊤xi|, if a⊤xi − b < 1.

By doing so, a penalty is applied not only to those points that were misclassified but also to
those points correctly classified that happen to be inside the slab S. To define an optimal robust
classifier, one must trade off the size of the slab, which is inversely proportional to ∥a∥, and the
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total of observations that fall in the slab S. The formulation for the robust classifier then becomes

min.

M∑

i=1

ui +

N∑

i=1

vi + γ∥a∥22 (13.24)

s.t.: a⊤xi − b− ui ≤ −1, i = 1, . . . ,M (13.25)

a⊤xi − b+ vi ≥ 1, i = 1, . . . , N (13.26)

ui ≥ 0, i = 1, . . . , N (13.27)

vi ≥ 0, i = 1, . . . ,M (13.28)

a ∈ Rn, b ∈ R. (13.29)

In objective function (13.24), the errors accumulated in variables ui, i = 1, . . . , N and vi, i =
1, . . . ,M and the squared norm ∥a∥22 are considered simultaneously. The term γ is a scalar used to
impose an emphasis on minimising the norm ∥a∥2 and incentivising a larger slab S (recall that the
slab is large for smaller ∥a∥2). The squared norm ∥a∥22 is considered instead as a means to recover
differentiability, as the norm ∥a∥2 is not differentiable. Later on, we will see how beneficial it is
for optimisation methods to be able to assume differentiability. Moreover, note how in constraints
(13.25) and (13.26) u and v also accumulate penalties for correctly classified xi that happen to be
between the slab S, that is, that have term a⊤x− b larger/ smaller than -1/ +1. Figure 13.5 shows
a robust classifier with an arbitrary value of γ.
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10

15

x 2
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Neg. obs.
Classifier
 
Classifier = 0.1
 

Figure 13.5: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue).

Remark: robust classifiers are known in the machine learning literature as support vector ma-
chines, where the support vectors are the observations that support the slab.
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Convex sets

14.1 Convexity and optimisation

Convexity is perhaps the most important property that the elements forming an optimisation
problem can present. Paraphrasing Tyrrell Rockafellar:

... in fact, the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity.

The importance of convexity will become clear later in the course. In a nutshell, the existence of
convexity allows us to infer global properties of a solution (i.e., that holds for all of its domain)
by considering exclusively local information (such as gradients, for example). This is critical in
the context of optimisation, since most of the methods we know to perform well in practice are
designed to find solutions that satisfy local optimality conditions. Once convexity is attested, one
can then guarantee that these local solutions are in fact globally optimal without exhaustively
exploring the solution space.

For a problem of the form

(P ) : min. f(x)

s.t.: x ∈ X

to be convex, we need to verify whether f is a convex function and X is a convex set. If both
statements hold true, we can conclude that P is a convex problem. We start looking into how to
identify convex sets, since we can use the convexity of sets to infer the convexity of functions.

14.2 Identifying convexity of sets

Before we formally define convex sets, let us first look at the idea of combinations. For that, let
S ⊆ Rn be a set and xj ∈ S for j = 1, . . . , k be an arbitrary finite collection of vectors (i.e.,
n-dimensional “points”) belonging to S. Then, we have that:

• A linear combination of xj , j = 1, . . . , k, is

x =

k∑

j=1

λjxj , (14.1)

where λj ∈ R for j = 1, . . . , k.

217
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• An affine combination is a linear combination, with the additional constraint that
∑k

j=1 λj =
1.

• A conic combination is a linear combination with the additional condition that λj ≥ 0 for
j = 1, . . . , k.

• And finally, a convex combination is both an affine and a conic combination, i.e., it is a linear
combination with the additional conditions that

–
∑k

j=1 λj = 1 and

– λj ≥ 0, j = 1, . . . , k.

Notice that implies that λj ∈ [0, 1] for j = 1, . . . , k.

We say that a set is convex if it contains all points formed by the convex combination of any pair
of points in this set. This is equivalent to saying that the set contains the line segment between
any two points belonging to the set.

Definition 14.1 (Convex sets). A set S ⊆ Rn is said to be convex if x = λx1 + (1− λ)x2 belongs
to S, for all x1, x2 ∈ S and 0 ≤ λ ≤ 1.

We can build upon Definition 14.1 to show that a set is convex if it contains all convex combinations
of points in the set. This is stated in Proposition 14.2.

Proposition 14.2 (Convex sets and convex combinations). A set S ⊂ Rn is convex if and only if
all finite convex combinations of its elements belong to S.

Proof. First, assume that S ⊆ Rn contains all finite convex combinations of its elements. That is,
for any integer k, we have that

x ∈ S, where x =

k∑

j=1

λjxj

if x1, . . . , xk ∈ S and λj ≥ 0, j = 1, . . . , k, satisfy
∑k

j=1 λj = 1. In particular, this implies that

x = λx1 + (1− λ)x2 belongs to S for any x1, x2 ∈ S and 0 ≤ λ ≤ 1. Thus, S is convex1.

Next, let us assume that S ⊆ Rn is convex. We will demonstrate via induction that S contains
all convex combinations of its elements. First, notice that S straightforwardly contains all convex
combinations of x1 ∈ S, since the only convex combination of a singleton is itself. This is the base
case of our induction argument.

Let l be an arbitrary integer and assume that

y ∈ S, where y =

l∑

j=1

µjyj (14.2)

for any y1, . . . , yl ∈ S and µj ≥ 0, j = 1, . . . , l, that satisfy
∑l

j=1 = 1. That is, we assume all “l-
dimensional” convex combinations of elements in S belong to S, which is our induction hypothesis.
We will now focus on using (14.2) and the convexity of S to show that all “(l + 1)-dimensional”
convex combinations of elements in S also belong to S, which is our induction step.

1Notice that, as λ ≥ 0, we have that 1− λ ≥ 0 and, somewhat obviously λ+ (1− λ) = 1, which means that our
arbitrary x is indeed a convex combination of x1 and x2, as per Definition 14.1
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Figure 14.1: Minkowski sum of two convex sets.

To this end, let x1, . . . , xl+1 ∈ S be arbitrarily selected, and assume that λj ≥ 0, j = 1, . . . , l + 1,

satisfy
∑l+1

j=1 λj = 1. Without loss of generality, we may assume that 0 ≤ λl+1 < 1. Indeed, due
to the conditions imposed on λj , j = 1, . . . , l + 1 ≥ 2, all of them cannot equal 1. Thus we have

x :=

l+1∑

j=1

λjxj = λl+1xl+1 + (1− λl+1)

l∑

j=1

µjxj , (14.3)

where µj = λj/(1− λl+1). Notice that µj ≥ 0 for all j = 1, . . . , l and, furthermore,

l∑

j=1

µj =
1

1− λl+1

l∑

j=1

λj =
1

1− λl+1




l+1∑

j=1

λj − λl+1


 =

1− λl+1

1− λl+1
= 1. (14.4)

As per our induction hypothesis, the l-dimensional convex combination
∑l

j=1 µjxj belongs to
S, as does xl+1 by assumption. Because S is convex, the arbitrary (l + 1)-dimensional convex
combination of x defined in (14.3) also belongs to S. This completes the induction step and the
proof.

Definition 14.1 and Proposition 14.2 are useful as it allows for showing that some set operations
preserve convexity.

14.2.1 Convexity-preserving set operations

Lemma 14.3 (Convexity-preserving operations). Let S1 and S2 be convex sets in Rn. Then, the
sets resulting from the following operations are also convex.

1. Intersection: S = S1 ∩ S2;

2. Minkowski addition: S = S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2};

3. Minkowski difference: S = S1 − S2 = {x1 − x2 : x1 ∈ S1, x2 ∈ S2};

4. Affine transformation: S = {Ax+ b : x ∈ S1}.

Figures 14.1 and 14.2 illustrate the concept behind some of these set operations. Showing that the
sets resulting from the operations in Lemma 14.3 are convex typically entails showing that convex
combinations of elements in the resulting set S also belong to S1 and S2.
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S1
S2

S1 ∩ S2

Figure 14.2: Intersection of two convex sets.

14.2.2 Examples of convex sets

There are several familiar sets that are known to be convex. Having the knowledge that these sets
are convex is useful as a building block for determining the convexity of more complicated sets.

Some important examples of convex sets include:

• Them empty set ∅, any singleton {x} and the whole space Rn;

• hyperplanes: H =
{
x : p⊤x = α

}
⊂ Rn, where p ̸= 0 is a normal vector and α ∈ R is a

scalar. Notice that H can be equivalently represented as H =
{
x ∈ Rn : p⊤(x− x) = 0

}
for

any x ∈ H;

• halfspaces: S =
{
x : p⊤x ≤ α

}
⊂ Rn;

• polyhedral sets: P = {x : Ax ≤ b} ⊂ Rn, where A ∈ Rm×n and b ∈ Rn;

• norm-induced sets (balls): B = {x : ∥x− x∥ ≤ α} ⊆ Rn, where ∥ · ∥ is any norm and α a
scalar;

• norm cones: C =
{
(x, α) ∈ Rn+1 : ∥x∥ ≤ α

}
;

For example, let us consider the polyhedral set P = {x ∈ Rn : Ax ≤ b} ⊂ Rn with A being a m×n
matrix. Notice that S is the intersection of a collection of half-spaces Hi =

{
x ∈ Rn : a⊤i x ≤ bi

}
,

where ai are vectors from the rows of the matrix A and bi are the components of the column vector
b. We know that Hi are convex sets, thus P = ∩mi=1Hi is also convex, as the intersection of sets is
a convexity-preserving set operation.

Hyperplanes and halfspaces

Hyperplanes and halfspaces will play a central role in the developments we will see in our course.
Therefore, let us take a moment and discuss some important aspects related to these convex sets.
First, notice that, geometrically, a hyperplane H ⊂ Rn can be interpreted as the set of points with
a constant inner product to a given vector p ∈ Rn, while x determines the offset of the hyperplane
from the origin. That is,

H =
{
x : p⊤(x− x) = 0

}
≡ x+ p⊥,

where p⊥ is the orthogonal complement of p, i.e., the set of vectors orthogonal to p, which is given
by
{
x ∈ Rn : p⊤x = 0

}
.
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H

p

x

H

Figure 14.3: A hyperplane H =
{
x ∈ Rn : p⊤(x− x) = 0

}
with normal vector p displaced to x.

Analogously, a (closed) halfspace can be represented as S =
{
x ∈ Rn : p⊤(x− x) ≤ 0

}
where

p⊤x = α, with α = p⊤x, is the hyperplane that forms the boundary of the halfspace. This
definition suggests a simple geometrical interpretation: the halfspace S consists of x plus any
vector with an obtuse or right angle (i.e., greater or equal to 90◦) with the outward normal vector
p.

H

p

x
x

S

Figure 14.4: A halfspace S =
{
x ∈ Rn : p⊤(x− x) ≤ 0

}
defined by the same hyperplane H. Notice

how the vectors p and x− x form angles greater or equal than 90◦.

P

a1

a2

a3

Figure 14.5: A polyhedron P formed by the intersection of three halfspaces. Each hyperplane
Hi =

{
x ∈ Rn : a⊤i x ≤ bi

}
, for i = 1, 2, 3, has a normal vector ai, and has an offset from the origin

bi (which cannot be seen since the picture is projected on a 2-dimensional plane).

Norm balls and norm cones

A closed Euclidean ball (or simply ball) of radius ϵ in Rn has the form

B(x, r) = {x ∈ Rn : ∥x− x∥2 ≤ ϵ} ≡
{
x ∈ Rn : (x− x)⊤(x− x) ≤ ϵ2

}
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As one might suspect, balls are convex, which can be proved by noting that

∥λx1 + (1− λ)x2 − x∥2 = ∥λ(x1 − x) + (1− λ)(x2 − x)∥2
≤ λ∥x1 − x∥2 ++(1− λ)∥x2 − x∥2 ≤ ϵ.

Notice that between the first and the second line, we use the triangle inequality, which states that
∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any two vectors x and y and any norm (including the Euclidean norm).

Euclidean balls are a special case of norm balls, which are defined asB(x, r) = {x ∈ Rn : ∥x− x∥ ≤ ϵ}
where ∥ · ∥ is any norm on Rn.

A related set is the norm cone, defined as C(x, α) =
{
(x, α) ∈ Rn+1 : ∥x∥ ≤ α

}
, where α is a scalar.

For example, the second-order cone (also known as the ice cream cone or Lorentz cone) is the norm
cone for the Euclidean norm.

Remark. Norm-induced sets (balls or cones) are convex for any norm ∥x∥p = (
∑n

i=1 x
p
i )

1
p for

x ∈ Rn and p ≥ 1.

14.3 Convex hulls

The convex hull of a set S, denoted as conv(S) is the set formed by all convex combinations of all
points in S. As the name suggests, conv(S) is a convex set, regardless of S being convex or not.

Another interpretation for conv(S) is to think of it as the tightest enveloping (convex) set that
contains S. Notice that, if S is convex, then S = conv(S). Formally, convex hulls are defined as
follows.

Definition 14.4 (Convex hull of a set). Let S ⊆ Rn be an arbitrary set. The convex hull of
S, denoted by conv(S), is the collection of all convex combinations of elements in S. That is,
x ∈ conv(S) if and only if for some integer k,

x =

k∑

j=1

λjxj

for x1, . . . xk in S, λj ≥ 0, j = 1, . . . , k, satisfying
∑k

j=1 λj = 1.

From Definition 14.4, one can show that the convex hull conv(S) can also be defined as the
intersection of all convex sets containing S. Perhaps the easiest way to visualise this is to think of
the infinitely many half-spaces containing S and their intersection, which can only be S. Figure
14.6 illustrates the convex hull conv(S) of a nonconvex set S.

S

conv(S)

Figure 14.6: Example of an arbitrary set S (in solid blue) and its convex hull conv(S) (combined
blue and grey areas).
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The notion of convex hulls is a powerful tool in optimisation. One important application is using
conv(S) to obtain approximations for a nonconvex S that can be exploited to solve an optimisation
problem with a constraint set defined by S. This is the underpinning technique in many important
optimisation methods such as branch-and-bound-based methods for nonconvex problems and de-
composition methods (i.e., methods that solve large problems by breaking them into smaller parts
that are presumably easier to solve).

In specific, let us consider the convex hull of a finite collection of discrete points. Some of these
sets are so important in optimisation that they have their own names.

Definition 14.5. Let S = {x1, . . . , xn+1} ⊂ Rn. Then conv(S) is called a polytope. If x1, . . . , xn+1

are affinely independent (i.e., x2 − x1, . . . , xn+1 − x1 are linearly independent) then conv(S) is
called a simplex with vertices x1, . . . , xn+1.

14.4 Closure and interior of sets

Many of the set-related results we will see in this course depends on the characteristics of the set
itself. Often, assuming properties such as closedness or compactness considerably ease technical
derivations.

14.4.1 Closure, interior and boundary of a set

Let us define some properties that will be useful in this course. For that, we will use an open
ϵ-neighbourhood of x ∈ Rn (which is a norm ball of radius ϵ centred in x) defined as

Nϵ(x) = {y : ||y − x|| < ϵ} .

Let S ⊆ Rn be an arbitrary set. We can use Nϵ to define the following concepts related to S.

1. Interior of S: the interior of S, denoted int(S), is the set

intS = {x ∈ S : Nϵ(x) ⊂ S for some ϵ > 0} .

If S is the same as its own interior, then we say that S is open. Some authors say that S
is solid if it has a nonempty interior, that is, int(S) ̸= ∅. Notice that the interior of S is a
subset of S, that is int(S) ⊆ S.

2. Boundary of S: the boundary of S, denoted bou(S) is defined by

bou(S) = {x ∈ Rn : Nϵ(x) contains some y ∈ S and some z /∈ S for every ϵ > 0} .

3. Closure of S: the closure of S, denoted clo(S), is defined as

clo(S) = {x ∈ Rn : S ∩Nϵ(x) ̸= ∅ for every ϵ > 0} .

Notice that the closure might contain points that do not belong to S. We say that a set is
closed if S = clo(S), that is, the set itself is its own closure.

4. Boundedness: we say that S is bounded if exists Nϵ(x), x ∈ Rn, for some ϵ > 0 such that
S ⊂ Nϵ(x).
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Because our setting is finite-dimensional by definition, we say that a set is compact if it is both
closed and bounded. Compact sets appear very frequently in real-world applications of optimisation,
since typically one can assume the existence of bounds for decision variables (such as nonnegativity
or maximum physical bounds or, in an extreme case, smallest/ largest computational constants).
Another frequent example of a bounded set is the convex hull of a collection of discrete points,
which is called by some authors polytopes (effectively bounded polyhedral sets).

Let us consider the following example. Let S =
{
(x1, x2) ∈ Rn : x21 + x22 ≤ 1

}
. Then, we have

that:

1. clo(S) =
{
(x1, x2) ∈ Rn : x21 + x22 ≤ 1

}
. Since S = clo(S), S is closed.

2. int(S) =
{
(x1, x2) ∈ Rn : x21 + x22 < 1

}
.

3. bou(S) =
{
(x1, x2) ∈ Rn : x21 + x22 = 1

}
. Notice that it makes S bounded.

4. S is compact since it is closed and bounded.

Notice that, if S is closed, then bou(S) ⊂ S. That is, its boundary is part of the set itself.
Moreover, it can be shown that clo(S) = bou(S) ∪ S is the smallest closed set containing S.

In case S is convex, one can infer the convexity of the interior int(S) and its closure clo(S). The
following theorem summarises this result.

Theorem 14.6. Let S ⊆ Rn be a convex set with int(S) ̸= ∅. Let x1 ∈ clo(S) and x2 ∈ int(S).
Then x = λx1 + (1− λ)x2 ∈ int(S) for all λ ∈ (0, 1).

Theorem 14.6 is useful for inferring the convexity of the elements related to S. We summarise the
key results in the following corollary.

Corollary 14.7. Let S be a convex set with int(S) ̸= ∅. Then

1. int(S) is convex;

2. clo(S) is convex;

3. clo(int(S)) = clo(S);

4. int(clo(S)) = int(S).

14.4.2 The Weierstrass theorem

The Weierstrass theorem is a result that guarantees the existence of optimal solutions for optimi-
sation problems. To make it more precise, let

(P ) : z = min. {f(x) : x ∈ S}

be our optimisation problem. If an optimal solution x∗ exists, then f(x∗) ≤ f(x) for all x ∈ S and
z = f(x∗) = min {f(x) : x ∈ S}.
Notice the difference between min. (an abbreviation for minimise) and the operator min. The
first is meant to represent the problem of minimising the function f in the domain S, while min is
shorthand for minimum, in this case z, assuming that it is attainable.
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It might be that an optimal solution is not attainable, but a bound can be obtained for the optimal
solution value. The greatest lower bound for z is its infimum (or supremum for maximisation
problems), denoted by inf. That is, if z = inf {f(x) : x ∈ S} , then z ≤ f(x) for all x ∈ S and
there is no z > z such that z ≤ f(x) for all x ∈ S. We might sometimes use the notation

(P ) : z = inf {f(x) : x ∈ S}

to represent optimisation problems for which one cannot be sure whether an optimal solution
is attainable. The Weierstrass theorem describes the situations in which those minimums (or
maximums) are guaranteed to be attained, which is the case whenever S is compact.

Theorem 14.8 (Weierstrass theorem). Let S ̸= ∅ be a compact set, and let f : S → R be
continuous on S. Then there exists a solution x ∈ S to min. {f(x) : x ∈ S}.

Figure 14.7 illustrates three examples. In the first (on the left) the domain [a, b] is compact, and
thus the minimum of f is attained at b. In the other two, [a, b) is open and therefore, Weierstrass
theorem does not hold. In the middle example, one can obtain inf f , which is not the case for the
last example on the right.

f(a)

f(b)

f(a)

inf f

f(a)

a b a b a

Figure 14.7: Examples of attainable minimum (left) and infimum (centre) and an example where
neither are attainable (right).

14.5 Separation and support of sets

The concepts of separation and support of sets are key for establishing optimality conditions later
in this course. We are interested in mechanisms that allow one to infer whether there exists
hyperplanes separating points from sets (or sets from sets). We will also be interested in means
to, given a point x /∈ S, find the closest to point not belonging to S.

14.5.1 Hyperplanes and closest points

We start with how to identify closest points to sets.

Theorem 14.9 (Closest-point theorem). Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then,
there exists a unique point x ∈ S with minimum distance from y. In addition, x is the minimising
point if and only if

(y − x)⊤(x− x) ≤ 0, for all x ∈ S
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Figure 14.8: Closest-point theorem for a closed convex set (on the left). On the right, an illustration
on how the absence of convexity invalidates the result.
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Figure 14.9: Normal vectors, hyperplane and halfspaces

Simply put, if S is a closed convex set, then x ∈ S will be the closest point to y /∈ S if the vector
y− x is such that if it forms an angle that is greater or equal than 90◦ with all other vectors x− x
for x ∈ S. Figure 14.8 illustrates this logic.

Notice that S lies in the half-space (y − x)⊤(x− x) ≤ 0 defined by the hyperplane p⊤(x− x) = 0
with normal vector p = (y − x). We will next revise the concepts of half-spaces and hyperplanes,
since they will play a central role in the derivations in this course.

14.5.2 Halfspaces and separation

We can use halfspaces to build the concept of separation. Let us start by recalling that a hyperplane
H =

{
x : p⊤x = α

}
with normal vector p ∈ Rn and α ∈ R defines two (closed) half-spaces

H+ =
{
x : p⊤x ≥ α

}
and H− =

{
x : p⊤x ≤ α

}
. Figure 14.9 illustrates the concept. Notice

how the vector p points towards the half-space H+.

Any hyperplane H can be defined in reference to a point x ∈ H by noticing that

p⊤(x− x) = p⊤x− p⊤x = α− α = 0.

From that, the half-spaces defined by H can be equivalently defined as H+ =
{
x : p⊤(x− x) ≥ 0

}

and H− =
{
x : p⊤(x− x) ≤ 0

}
.

We can now define the separation of convex sets.

Definition 14.10. Let S1 and S2 be nonempty sets in Rn. The hyperplane H =
{
x : p⊤x = α

}
is

said to separate S1 and S2 if p⊤x ≥ α for each x ∈ S1 and p⊤x ≤ α for each x ∈ S2. In addition,
the following apply:
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1. Proper separation: S1 ∪ S2 ̸⊂ H;

2. Strict separation: p⊤x < α for each x ∈ S1 and p⊤x > α for each x ∈ S2;

3. Strong separation: p⊤x ≥ α+ ϵ for some ϵ > 0 and x ∈ S1, and p
⊤x ≤ α for each x ∈ S2.

Figure 14.10 illustrates the three types of separation in Definition 14.10. On the left, proper
separation is illustrated, which is obtained by any hyperplane that does not contain both S1 and
S2, but that might contain points from either or both. In the middle, sets S1 and S2 belong to
two distinct half-spaces in a strict sense. On the right, strict separation holds with an additional
margin ϵ > 0, which is defined as strong separation.
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Figure 14.10: Three types of separation between S1 and S2.

A powerful yet simple result that we will use later is that, for a closed convex set S, there always
exists a hyperplane separating S and a point y that does not belong to S.

Theorem 14.11 (Separation theorem). Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then,
there exists a nonzero vector p ∈ Rn and α ∈ R such that p⊤x ≤ α for each x ∈ S and p⊤y > α.

Proof. Theorem 14.9 guarantees the existence of a unique minimising x ∈ S such that (y−x)⊤(x−
x) ≤ 0 for each x ∈ S. Let p = (y − x) ̸= 0 and α = (y − x)⊤x = p⊤x. Then we get p⊤x ≤ α for
each x ∈ S, while p⊤y − α = (y − x)⊤(y − x) = ∥y − x∥2 > 0.

This is the first proof we look at in these notes, and the reason for that is its importance in
many of the results we will discuss further. The proof first looks at the problem of finding a
minimum distance point as an optimisation problem and uses the Weierstrass theorem (in our
finite-dimensional setting, Theorem 14.9 is a consequence of the Weierstrass theorem stated in
Theorem 14.8) to guarantee that such a x exists. Being a minimum distance point, we know from
Theorem 14.9 that (y− x)⊤(x− x) ≤ 0 holds. Now by defining p and α as in the proof, one might
notice that

(y − x)⊤(x− x) ≤ 0 ⇔ (y − x)⊤x ≤ (y − x)⊤x ⇔ p⊤x ≤ p⊤x = α.

The inequality p⊤y > α is demonstrated to hold in the final part by noticing that

p⊤y − α = (y − x)⊤y − x⊤(y − x)
= y⊤(y − x)− x⊤(y − x)
= (y − x)⊤(y − x) = ∥y − x∥2 > 0.

Theorem ?? has interesting consequences. For example, one can apply it to every point in the
boundary bou(S) to show that S is formed by the intersection of all half-spaces containing S.

Another interesting result is the existence of strong separation. If y /∈ clo(conv(S)), then one can
show that a strong separation between y and S exists since there will surely be a distance ϵ > 0
between y and S.
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14.5.3 Farkas’ theorem

Farkas’ theorem plays a central role in deriving optimality conditions. It can assume several
alternative forms, which are typically referred to as Farkas’ lemmas. In essence, the Farkas’ theorem
is used to demonstrate that a given system of linear equations has a solution if and only if a related
system can be shown to have no solutions and vice-versa.

Theorem 14.12. Let A be an m×n matrix and c be an n-vector. Then exactly one of the following
two systems has a solution:

(1) : Ax ≤ 0, c⊤x > 0, x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

Proof. Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0.
Hence, (1) has no solution.

Next, suppose (2) has no solution. Let S =
{
x ∈ Rn : x = A⊤y, y ≥ 0

}
. Notice that S is closed

and convex and that c /∈ S. By Theorem ??, there exists p ∈ Rn and α ∈ R such that p⊤c > α
and p⊤x ≤ α for x ∈ S.
As 0 ∈ S, α ≥ 0 and thus p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for all y ≥ 0. This implies that
Ap ≤ 0, and thus p satisfies (1).

The first part of the proof shows that, if we assume that system (2) has a solution, then c⊤x > 0
cannot hold for y ≥ 0. The second part uses the separation theorem (Theorem ??) to show that
c can be seen as a point not belonging to the closed convex set S for which there is a separation
hyperplane and that the existence of such plane implies that system (1) must hold. The set S is
closed and convex since it is a conic combination of rows ai, i = 1, . . . ,m of A. Using the fact that
0 ∈ S, one can show that α ≥ 0. The last part uses the identity p⊤A⊤ = (Ap)⊤ and the fact that
(Ap)⊤y = y⊤Ap. Since the components of y can be arbitrarily large positive numbers and α is a
nonnegative constant, y⊤Ap ≤ α holds for all y ≥ 0 if and only if y⊤Ap > ϵ were true for some
ϵ > 0 and ỹ ≥ 0, then choosing y = βỹ ≥ 0, β > 0,m and letting β →∞ would lead to arbitrarily
large values for y⊤Ap ≥ βϵ, which would contradict y⊤Ap ≤ α.
Farkas’ theorem has an interesting geometrical interpretation arising from this proof, as illustrated
in Figure 14.11. Consider the cone C formed by the rows of A

C =

{
c ∈ Rn : cj =

m∑

i=1

aijyi, j = 1, . . . , n, yi ≥ 0, i = 1, . . . ,m

}

The polar cone of C, denoted C0, is formed by the all vectors having angles of 90◦ or more with
vectors in C. That is,

C0 =
{
x ∈ Rn : c⊤x ≤ 0,∀c ∈ C

}
= {x : Ax ≤ 0} .

Notice that (1) has a solution if the intersection between the polar cone C0 and the positive half-
space H+ =

{
x ∈ Rn : c⊤x > 0

}
is not empty. If (2) has a solution, as in the beginning of the

proof, then c ∈ C and the intersection C0 ∩H+ = ∅. Now, if (2) does not have a solution, that is,
c /∈ C, then one can see that C0 ∩H+ cannot be empty, meaning that (1) has a solution.
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Figure 14.11: Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a
solution, while on the right, system (1) has a solution

14.5.4 Supporting hyperplanes

There is an important connection between the existence of hyperplanes that support a whole set
and optimality conditions of points. Let us first define supporting hyperplanes.

Definition 14.13 (Supporting hyperplane). Let S ̸= ∅ be a set in Rn, and let x ∈ bou(S).
H =

{
x ∈ Rn : p⊤(x− x) = 0

}
is a supporting hyperplane of S at x if either S ⊆ H+ (i.e.,

p⊤(x− x) ≥ 0 for x ∈ S) or S ⊆ H−.

Figure 14.12 illustrates the concept of supporting hyperplanes. Notice that supporting hyperplanes
might not be unique, with the geometry of the set S playing an important role in that matter.

Let us define the function f(x) = p⊤x with x ∈ S. One can see that the optimal solution x given
by

x = argmax
x∈S

f(x)

is a point x ∈ S for which p is a supporting hyperplane. A simple geometric analogy is to think
that the f increases value as one moves in the direction of p. The constraint x ∈ S will eventually
prevent the movement further from S and this last contact point is precisely x. This is a useful
concept for optimising problem using gradients of functions, as we will discuss later in the course.
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Figure 14.12: Supporting hyperplanes for an arbitrary set. Notice how a single point might have
multiple supporting planes (middle) or different points might have the same supporting hyperplane
(right)

One characteristic that convex sets present that will be of great importance when establishing
optimality conditions is the existence of supporting hyperplanes at every boundary point.
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Theorem 14.14 (Support of convex sets). Let S ̸= ∅ be a convex set in Rn, and let x ∈ bou(S).
Then there exists p ̸= 0 such that p⊤(x− x) ≤ 0 for each x ∈ clo(S).

The proof follows from Theorem ??, without explicitly considering a point y /∈ S and by noticing
that bou(S) ⊂ clo(S). Figure 14.13 provides an illustration of the theorem.

S

p

x

Figure 14.13: Supporting hyperplanes for convex sets. Notice how every boundary point has at
least one supporting hyperplane
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Convex functions

15.1 Convexity in functions

Now we turn our attention to identifying the convexity of functions. Consider the general problem

(P ) : min. f(x)

s.t.: g(x) ≤ 0

x ∈ X

with f : Rn → R, g : Rn → Rm and X ⊆ Rn. Assuming X is a convex set, the next step towards
attesting that (P ) is a convex problem is to check whether f and g are convex. It is important
to emphasise (perhaps redundantly at this point) how crucial is for us to be able to attest the
convexity (P ), since it allows us to generalise local optimality results to the whole domain of the
problem.

The convexity of functions has a different definition than that used to define convex sets.

Definition 15.1 (Convexity of a function I). Let f : S → R where S ⊆ Rn is a nonempty convex
set. The function f is said to be convex on S if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ [0, 1].

Very often, we use the term convex to loosely refer to concave functions, which must be done with
caution. In fact, if f is convex, than −f is concave and we say that (P ) is a convex problem even
if f is concave and we seek to maximise f instead. Also, linear functions are both convex and
concave.

We say that a convex function is strictly convex if the inequality holds strictly in Definition 15.1
for each λ ∈ (0, 1) (notice the open interval instead). In practice, it means that the function is
guaranteed to not present flatness around its minimum (or maximum, for concave functions).

15.1.1 Example of convex functions

Some examples of convex function are:

1. f(x) = a⊤x+ b;

2. f(x) = ex;

231
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3. f(x) = xp on R+ for p ≤ 0 or p ≥ 1; concave for 0 ≤ p ≤ 1.

4. f(x) = ||x||p (p-norm);

5. f(x) = − log x and negative entropy f(x) = −x log x are concave;

6. f(x) = max {x1, . . . , xn}.

Knowing that these common functions are convex is helpful for identifying convexity in more com-
plex functions formed by composition. By knowing that an operation between functions preserves
convexity, we can infer the convexity of more complicated functions. The following are convexity
preserving operations.

1. Let f1, . . . , fk : Rn → R be convex. Then these are convex:

• f(x) =
∑k

j=1 αjfj(x) where αj > 0 for j = 1, . . . , k;

• f(x) = max {f1(x), . . . , fk(x)};
2. f(x) = 1

g(x) on S, where g : Rn → R is concave and S = {x : g(x) > 0};

3. f(x) = g(h(x)), where g : R → R is a nondecreasing convex function and h : Rn → R is
convex.

4. f(x) = g(h(x)), where g : Rm→R is convex and h : Rn → Rm is affine: h(x) = Ax+ b with
A ∈ Rm×n and b ∈ Rm.

15.1.2 Convex functions and their level sets

There is a strong connection between convexity of sets and the convexity of functions. Let us first
consider level sets, which is one type of set spawned by functions.

Definition 15.2 (Lower level set). Let S ⊆ Rn be a nonempty set. The lower level set of f : Rn →
R for α ∈ R is given by

Sα = {x ∈ S : f(x) ≤ α} .

Figure 15.1 illustrates the lower level sets of two functions. The lower level set Sα can be seem as
the projection of the function image onto the domain for a given level α.

f(x) f(x)

x x

α α

Figure 15.1: The lower level sets Sα (in blue) of two functions, given a value of α. Notice the
nonconvexity of the level set of the nonconvex function (on the right)

Notice that, for convex functions, no discontinuity can be observed, making Sα convex. Lemma
15.3 states this property.
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f(x) f(x)

x x

epi(f)
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Figure 15.2: The epigraph epi()f of a convex function is a convex set (in grey on the left).

Lemma 15.3. Let S ⊆ Rn be a nonempty convex set and f : S → R a convex function. Then,
any level set Sα with α ∈ R is convex.

Proof. Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S with f(x1) ≤ α and f(x2) ≤ α. Let λ ∈ (0, 1) and
x = λx1 + (1− λ)x2. Since S is convex, we have that x ∈ S. Now, by the convexity of f , we have

f(x) ≤ λf(x1) + (1− λ)f(x2) ≤ λα+ (1− λ)α = α

and thus x ∈ Sα.

Remark: notice that a convex lower level set does not necessarily mean that the function is
convex. In fact, as we will see later, there are nonconvex functions that have convex level sets (the
so-called quasiconvex functions).

15.1.3 Convex functions and their epigraphs

Epigraphs, on the other hand, can be used to show the convexity of functions. Let us first formally
define epigraphs.

Definition 15.4 (Ephigraph). Let S ⊆ Rn be a nonempty set and f : S → R. The epigraph of f
is

epi(f) = {(x, y) : x ∈ S, y ∈ R, y ≥ f(x)} ⊆ Rn+1

Figure 15.2 illustrates the epigraphs of two functions. Notice that the second function (on the
right) is not convex, and nor is its epigraph. In fact, we can use the convexity of epigraphs (and
the technical results associated with the convexity of sets) to show the convexity of functions.

Theorem 15.5 (Convex epigraphs). Let S ⊆ Rn be a nonempty convex set and f : S → R. Then
f is convex if and only if epi(f) is a convex set.

Proof. First, suppose f is convex and let (x1, y1), (x2, y2) ∈ epi(f) for λ ∈ (0, 1). Then

λy1 + (1− λ)y2 ≥ λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

As λx1 + (1− λ)x2 ∈ S, (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ epi(f).

Conversely, suppose epi(f) is convex. Therefore x1, x2 ∈ S: (x1, f(x1)) ∈ epi(f), (x2, f(x2)) ∈
epi(f) and (λx1+(1−λ)x2, λf(x1)+(1−λ)f(x2)) ∈ epi(f) for λ ∈ (0, 1), implying that λf(x1)+
(1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).
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The proof starts with the implication “if f is convex, then epi(f) is convex”. For that, it assumes
that f is convex and use the convexity of f to show that any convex combination of x1,x2 in S
will also be in the epi(f), which is the definition of a convex set.

To prove the implication “if epi(f) is convex, then f is convex”, we define a convex combination
of points in epi(f) and use the definition of epi(f) to show that f is convex by setting y =
λf(x1) + (1− λ)f(x2) and x = λx1 + (1− λ)x2.

15.2 Differentiability of functions

15.2.1 Subgradients and supporting hyperplanes

Subgradients can be understood as supporting hyperplanes at the boundary of function epigraphs.
They can be seem as first-order local approximations of the function, which is often helpful infor-
mation for optimisation methods when searching for directions of improvement.

Definition 15.6 (Subgradients). Let S ⊆ Rn be a nonempty convex set and f : S → R a convex
function. Then ξ ∈ Rn is a subgradient of f at x ∈ S if

f(x) ≥ f(x) + ξ⊤(x− x). (15.1)

Inequality (15.1) is called the subgradient inequality and is going to be useful in several contexts
later int his course. The set of subgradients ξ of f at x is the subdifferential

∂f (x) =
{
ξ ∈ Rn : f(x) ≥ f(x) + ξ⊤(x− x)

}
.

Every convex function f : S → R has at least one subgradient at any point x in the interior of the
convex set S. Requiring that x ∈ int(S) allows us to disregard boundary points of f where ∂(x)
might be empty. Theorem 15.7 presents this result.

Theorem 15.7. Let S ⊆ Rn be a nonempty convex set and f : S → R a convex function. Then
for all x ∈ int(S), there exists ξ ∈ Rn such that

H =
{
(x, y) : y = f(x) + ξ⊤(x− x)

}

supports epi(f) at (x, f(x)). In particular,

f(x) ≥ f(x) + ξ⊤(x− x),∀x ∈ S.

The proof consists of directly applying Theorem 15.5 and then using the support of convex sets
theorem (Theorem 14 in Lecture 2) to show that the subgradient inequality holds.

15.2.2 Differentiability and gradients for convex functions

Let us first define differentiability of a function.

Definition 15.8. Let S ⊆ Rn be a nonempty set. The function f : S → R is differentiable at
x ∈ int(S) if there exists a vector ∇f(x), called a gradient vector, and a function α : Rn → R such
that

f(x) = f(x) +∇f(x)⊤(x− x) + ||x− x||α(x;x− x)
where limx→x α(x;x − x) = 0. If this is the case for all x ∈ int(S), we say that the function is
differentiable in S.
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Notice that this definition is based on the existence of first-order (Taylor series) expansion, with
an error term α. This definition is useful as it highlights the requirement that ∇f(x) exists and is

unique at x since the gradient is given by ∇f(x) =
[
∂f(x)
∂xi

]
i
= 1, . . . , n.

If f is differentiable in S, then its subdifferential ∂(x) is a singleton (a set with a single element)
for all x ∈ S. This is shown in Lemma 15.9

Lemma 15.9. Let S ⊆ Rn be a nonempty convex set and f : S → R a convex function. Suppose
that f is differentiable at x ∈ int(S). Then ∂f (x) = {∇f(x)}, i.e., the subdifferential ∂f (x) is a
singleton with ∇f(x) as its unique element.

Proof. From Theorem 15.7, ∂f(x) ̸= ∅. Moreover, combining the existence of a subgradient ξ and
differentiability of f at x, we obtain:

f(x+ λd) ≥ f(x) + λξ⊤d (15.2)

f(x+ λd) = f(x) + λ∇f(x)⊤d+ λ||d||α(x;λd) (15.3)

Subtracting (15.3) from (15.2), we get 0 ≥ λ(ξ−∇f(x))⊤d−λ||d||α(x;λd). Dividing by λ > 0 and
letting λ → 0+, we obtain (ξ − ∇f(x))⊤d ≤ 0. Now, by setting d = ξ − ∇f(x), it becomes clear
that ξ = ∇f(x).

Notice that in the proof we use x+λd to indicate that x is in direction d, scaled by λ > 0. The fact
that ∂f (x) is a singleton comes from the uniqueness of the solution for (ξ−∇f(x))⊤(ξ−∇f(x)) = 0.

Figure 20.9 illustrates subdifferential sets for three distinct points of a piecewise linear function.
The picture schematically represents a multidimensional space x as a one-dimensional projection
(you can imagine this picture as being a section in one of the x dimensions). For the points in which
the function is not differentiable, the subdifferential set contains an infinite number of subgradients.
At points in which the function is differentiable (any mid-segment point) the subgradient is unique
(a gradient) and the subdifferential is a singleton.

If f : S → R is a convex differentiable function, then Theorem 15.7 can be combined with Lemma
15.9 to express the one of the most powerful results relating f and its affine (first-order) approxi-
mation at x.

Theorem 15.10 (Convexity of a function II). Let S ⊆ Rn be a nonempty convex open set, and let
f : S → R be differentiable on S. The function f is convex if and only if for any x ∈ S, we have

f(x) ≥ f(x) +∇f(x)⊤(x− x), ∀x ∈ S.

The proof for this theorem follows from the proof for Theorem 15.7 to obtain the subgradient
inequality and then use Lemma 15.9 to replace the subgradient with the gradient. To see how the
opposite direction (subgradient inequality holing implying the convexity of f), one should proceed
as follows.

1. Take x1 and x2 from S. The convexity of S implies that λx1 + (1− λ)x2 is also in S.

2. Assume that the subgradient exists, and therefore the two relations hold:

f(x1) ≥ f(λx1 + (1− λ)x2) + (1− λ)ξ⊤(x1 − x2) (15.4)

f(x2) ≥ f(λx1 + (1− λ)x2) + λξ⊤(x2 − x1) (15.5)
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f(x)

x

ξ

ξ

∂f(x1)

∂f(x3)

∂f(x2) = ∇f(x2)

x1 x2 x3

Figure 15.3: A representation of the subdifferential (in grey) for nondifferentiable (x1 and x3) and
differentiable (x2) points

3. Multiply (15.4) by λ, (15.5) by (1− λ), and add them together. One will then obtain

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2),

which is implies convexity.

15.2.3 Second-order differentiability

We say that a function is twice-differentiable if it has a second-order Taylor expansion. Having
second-order expansions can be useful in that it allows for encoding curvature information in the
approximation, which is characterised by the Hessian, and to verify convexity (or strict convexity)
by testing for semi-definiteness (positive definiteness).

Let fij(x) =
∂2f(x)
∂xi∂xj

. Recall that the Hessian matrix H(x) at x is given by

H(x) =




f11(x) . . . f1n(x)
...

. . .
...

fn1(x) . . . fnn(x)




Second-order differentiability can be defined as follows.

Definition 15.11 (Second-order differentiability). Let S ⊆ Rn be a nonempty set, and let f :
S → R. Then f is twice differentiable at x ∈ int(S) if there exists a vector ∇f(x) ∈ Rn, an n× n
symmetric matrix H(x) (the Hessian), and a function α : Rn → R such that

f(x) = f(x) +∇f(x)⊤(x− x) + 1

2
(x− x)⊤H(x)(x− x) + ||x− x||2α(x;x− x)

where limx→x α(x;x − x) = 0. If this is the case for all x ∈ S, we say that the function is twice
differentiable in S.
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We say that H(x) is positive semi-definite if x⊤H(x)x ≥ 0 for x ∈ Rn. Having a positive semi-
definite Hessian for all x ∈ S implies that the function is convex in S.

Theorem 15.12. Let S ⊆ Rn be a nonempty convex open set, and let f : S → R be twice
differentiable on S. Then f is convex if and only if the Hessian matrix is positive semidefinite
(PSD) at each point in S.

Proof. Suppose f is convex and let x ∈ S. Since S is open, x+ λx ∈ S for a small enough |λ| ≠ 0.
From Theorem 15.10 and twice differentiability of f , we have

f(x+ λx) ≥ f(x) + λ∇f(x)⊤x (15.6)

f(x+ λx) = f(x) + λ∇f(x)⊤x+
1

2
λ2x⊤H(x)x+ λ2||x||2α(x;λx) (15.7)

Subtracting (15.6) from (15.7), we get 1
2λ

2x⊤H(x)x+ λ2||x||2α(x;λx) ≥ 0. Diving by λ2 > 0 and
letting λ→ 0, it follows that x⊤H(x)x ≥ 0.

Conversely, assume thatH(x) is PSD for all x ∈ S. Using the mean value theorem and second-order
expansion, one can show that

f(x) = f(x) +∇f(x)⊤(x− x) + 1

2
(x− x)⊤H(x̂)(x− x)

where x̂ = λx + (1 − λ)x for λ ∈ (0, 1). Note that x̂ ∈ S and H(x̂) is positive semidefinite by
assumption. Thus (x− x)⊤H(x̂)(x− x) ≥ 0, implying f(x) = f(x) +∇f(x)⊤(x− x) ≥ 0.

The proof uses a trick we have seen before. First, we assume convexity and use the definition of
convexity provided by Theorem 15.10 combined with an alternative definition for (x− x) to show
that x⊤H(x)x ≥ 0. That is, instead of using the reference points x and x, we incorporate a step
size λ from x in the direction of x.

To show the other direction of implication, that is, that x⊤H(x)x ≥ 0 implies convexity, we use
the mean value theorem. The mean value theorem states that there must exist a point x̂ between x
and x for which the second order approximation is exact. From these, we can derive the definition
of convexity, as in Theorem 15.10.

Checking for positive semi-definiteness can be done efficiently using appropriate computational
algebra method, though it can be computationally expensive. It involves calculating the eigenval-
ues of H(x) and testing whether they are all nonnegative (positive), which implies the positive
semi-definiteness (definiteness) of H(x). Some nonlinear solvers are capable of returning warning
messages (or errors even) pointing out lack of convexity by testing (under a certain threshold) for
positive semi-definiteness.

15.3 Quasiconvexity

Quasiconvexity can be seem as the generalisation of convexity to functions that are not convex,
but share similar properties that allow for defining global optimality conditions. One class of these
functions are named quasiconvex. Let us first technically define quasiconvex functions.

Definition 15.13 (quasiconvex functions). Let S ⊆ Rn be a nonempty convex set and f : S → R.
Function f is quasiconvex if, for each x1, x2 ∈ S and λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≤ max {f(x1), f(x2)} . (15.8)
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We say that, if f is quasiconvex, then −f is quasiconcave. Also, functions that are both quasiconvex
and quasiconcave are called quasilinear. Quasiconvex functions are also called unimodal.

Figure 15.4 illustrates a quasiconvex function. Notice that, for any pair of points x1 and x2 in the
domain of f , the graph of the function is always below the maximum between f(x1) and f(x2).
This is precisely what renders convex the lower level sets of quasiconvex functions. Notice that,
on the other hand, the epigraph epi(f) is not a convex set.

f(x) f(x)

x xx1 x2

f(x1)

f(x2)

α

Sα

Figure 15.4: A quasiconvex function with its epigraph (in grey) and lower level set (in blue).

Examples of quasiconvex functions include:

1. f(x) =
√
|x| in R

2. f(x) = log x is quasilinear for x > 0

3. f(x) = inf {z ∈ Z : z ≥ x} is quasilinear

4. f(x1, x2) = x1x2 is quasiconcave on S =
{
(x1, x2) ∈ R2 : x1, x2 > 0

}

An important property of quasiconvex functions is that their level sets are convex.

Theorem 15.14. Let S ⊆ Rn be a nonempty convex set and f : S → R. Function f is quasiconvex
if and only if Sα = {x ∈ S : f(x) ≤ α} is convex for all α ∈ R.

Proof. Suppose f is quasiconvex and let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S and max {f(x1), f(x2)} ≤
α. Let x = λx1 + (1 − λ)x2 for λ ∈ (0, 1). As S is convex, x ∈ S. By quasiconvexity of f ,
f(x) ≤ max {f(x1), f(x2)} ≤ α. Hence, x ∈ Sα and Sα is convex.

Conversely, assume that Sα is convex for α ∈ R. Let x1, x2 ∈ S, and let x = λx1 + (1 − λ)x2 for
λ ∈ (0, 1). Note that, for α = max {f(x1), f(x2)}, we have x1, x2 ∈ Sα. The convexity of Sα implies
that x ∈ Sα, and thus f(x) ≤ α = max {f(x1), f(x2)}, which implies that f is quasiconvex.

The proof relies on the convexity of the domain S to show that a convex combination from point
in the level set Sα also belongs to Sα. To show the other way around, we simply need to define
α = max {f(x1), f(x2)} to see that a convex level set Sα implies that f is quasiconvex.

Quasiconvex functions have an interesting first-order condition that arises from the convexity of
its level sets.

Theorem 15.15. Let S ⊆ Rn be a nonempty open convex set, and let f : S → R
be differentiable on S. Then f is quasiconvex if and only if, for x1, x2 ∈ S and f(x1) ≤ f(x2),
∇f(x2)⊤(x1 − x2) ≤ 0.
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Figure 15.5: Surface plot and level curves for f(x) =
√
||x||1

The condition in Theorem 15.15 is in fact sufficient for global optimality if one can show that f
is in fact strictly quasiconvex, that is when (15.8) holds strictly. Figure 15.5a and 15.5b show an
example of a strict quasiconvex function and its level curves, illustrating that, despite the lack of
convexity, the level sets are convex.

Strictly quasiconvex functions is a subset of a more general class of functions named pseudoconvex,
for which the conditions in Theorem 15.15 are sufficient for global optimality.
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Chapter 16

Unconstrained optimality
conditions

16.1 Recognising optimality

We now turn our focus to recognising whether a given point satisfy necessary and/or sufficient
conditions for optimality. Even though these conditions can be used to test if a candidate point
is optimal for a problem, its most important use is serving as a framework for directing solution
methods in their search for optimal solutions.

Before we proceed, let us define the terminology we will use to refer to solutions. Let f : Rn → R.
Consider the problem (P ) : min. {f(x) : x ∈ S}.

1. a feasible solution is any solution x ∈ S;

2. a local optimal solution is a feasible solution x ∈ S that has a neighbourhood Nϵ(x) =
{x : ||x− x|| ≤ ϵ} for some ϵ > 0 such that f(x) ≤ f(x) for each x ∈ S ∩Nϵ(x).

3. a global optimal solution is a feasible solution x ∈ S with f(x) ≤ f(x) for all x ∈ S. Or
alternatively, is a local optimal solution for which S ⊆ Nϵ(x).

Figure 16.1 illustrates the concepts above. Solution x1 is an unconstrained global minimum, but
is not a feasible solution considering the feasibility set S. Solution x2 is a local optima, for any
neighbourhood Nϵ(x2) only encompassing the points within the same plateau. Solution x3 is a
local optimum, while x4 is neither a local or a global optimum in the unconstrained case, but is
a global maximum in the constrained case. Finally, x5 is the global minimum in the constrained
case.

16.2 The role of convexity in optimality conditions

We can now state what is possibly the most important result in optimisation. In a nutshell, this
results allows one promote local optimality to global optimality in the presence of convexity.

Theorem 16.1 (global optimality of convex problems). Let S ⊆ Rn be a nonempty convex set
and f : S → R convex on S. Consider the problem (P ) : min. {f(x) : x ∈ S}. Suppose x is a
local optimal solution to P . Then x is a global optimal solution.

Proof. Since x is a local optimal solution, there exists Nϵ(x) such that, for each x ∈ S ∩ Nϵ(x),
f(x) ≤ f(x). By contradiction, suppose x is not a global optimal solution. Then, there exists a

241
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f(x)

xx1 x2 x3 x4

(a) Unconstrained optimisation problem

f(x)

xx1 x2 x3 x4x5

S

(b) Constrained optimisation problem

Figure 16.1: Points of interest in optimisation. Points x1, x2 and x3 are local optima in the
unconstrained problem. Once a constraint set S is imposed, x4 and x5 become points of interest
and x1 becomes infeasible.
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solution x̂ ∈S so that f(x̂) < f(x). Now, for any λ ∈ [0, 1], the convexity of f implies:

f(λx̂+ (1− λ)x) ≤ λf(x̂) + (1− λ)f(x) < λf(x) + (1− λ)f(x) = f(x)

However, for λ > 0 sufficiently small, λx̂+ (1− λ)x ∈ S ∩Nϵ(x) due to the convexity of S, which
contradicts the local optimality of x. Thus, x is a global optimum.

The proof is built using contradiction. That is, we show that for a solution to be a local optimum
in a convex problem, not being a global solution contradicts its local optimality, originally true by
assumption. This is achieved using the convexity of f and showing that the convex combination
between hypothetical better solution x̂ and x would have to be both in Nϵ(x) and better than x,
contradicting the local optimality of x.

16.3 Optimality condition of convex problems

We first look at optimality conditions in a general sense to then translate the concept to uncon-
strained and constrained problems specifically. Taking this more general standpoint is also helpful
to understand how these can be specialised in the absence of a closed domain or in the presence of
differentiability. We assume convexity for now, and later we will discuss further the consequences
of the absence of convexity. Note that unconstrained problems have convex feasibility set (i.e., the
whole Rn), and thus what follows can be generalised to unconstrained optimisation problems.

Theorem 16.2 (optimality condition for convex problems). Let S ⊆ Rn be a nonempty convex
set and f : Rn → R convex on S. Consider the problem (P ) : min. {f(x) : x ∈ S}. Then, x ∈ S
is an optimal solution to (P ) if and only if f has a subgradient ξ at x such that ξ⊤(x− x) ≥ 0 for
all x ∈ S.

Proof. Suppose that ξ⊤(x− x) ≥ 0 for all x ∈ S, where ξ is a subgradient of f at x. By convexity
of f , we have, for all x ∈ S

f(x) ≥ f(x) + ξ⊤(x− x) ≥ f(x)

and hence x is optimal.

Conversely, suppose that x is a global optimal for P . Construct the sets:

Λ1 = {(x− x, y) : x ∈ Rn, y > f(x)− f(x)}
Λ2 = {(x− x, y) : x ∈ S, y ≤ 0}

Note that Λ1 and Λ2 are convex. By optimality of x, Λ1 ∩ Λ2 = ∅. Using the separation theorem,
there exists a hyperplane defined by (ξ0, µ) ̸= 0 and α that separates Λ1 and Λ2:

ξ⊤0 (x− x) + µy ≤ α, ∀x ∈ Rn, y > f(x)− f(x) (16.1)

ξ⊤0 (x− x) + µy ≥ α, ∀x ∈ S, y ≤ 0. (16.2)

Letting x = x and y = 0 in (16.2), we get α ≤ 0. Next, letting x = x and y = ϵ > 0 in (16.1), we
obtain α ≥ µϵ. As this holds for any ϵ > 0, we must have µ ≤ 0 and α ≥ 0, the latter implying
α = 0.

If µ = 0, we get from (16.1) that ξ⊤0 (x − x) ≤ 0 for all x ∈ Rn. Now, by letting x = x + ξ0, it
follows that ξ⊤0 (x− x) = ||ξ0||2 ≤ 0, and thus ξ0 = 0. Since (ξ0, µ) ̸= 0, we must have µ < 0.
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Dividing (16.1) and (16.2) by −µ and denoting ξ = −ξ0
µ , we obtain:

ξ⊤(x− x) ≤ y, ∀x ∈ Rn, y > f(x)− f(x) (16.3)

ξ⊤(x− x) ≥ y, ∀x ∈ S, y ≤ 0 (16.4)

Letting y = 0 in (16.4), we get ξ⊤(x − x) ≥ 0 for all x ∈ S. From (16.3), we can see that
y > f(x) − f(x) and y ≥ ξ⊤(x − x). Thus, f(x) − f(x) ≥ ξ⊤(x − x), which is the subgradient
inequality. Thus, ξ is a subgradient at x with ξ⊤(x− x) ≥ 0 for all x ∈ S.

In the first part of the proof, we use the definition of convexity based on the subgradient inequality
to show that ξ⊤(x − x) ≥ 0 implies that f(x) ≤ f(x) for all x ∈ S. The second part of the proof
uses the separation theorem in a creative way to show that the subgradient inequality must hold
if x is optimal. This is achieved by using the two sets Λ1 and Λ2. Notice that, x being optimal
implies that y > f(x)− f(x) ≥ 0, which leads to the conclusion that Λ1 ∩ Λ2 = ∅, demonstrating
the existence of a separating hyperplane between them, as shown in (16.1) and (16.2). We can
show that α in those has to be 0 by noticing that µϵ ≤ 0 must hold for ϵ > 0 to be a bounded
constant.

The second part is dedicated to show that µ < 0, so we can divide (16.1) and (16.2) by µ to obtain
the subgradient inequality as we have seen. We show that by contradiction, since µ = 0 would
imply ξ0 = 0, which disagrees with existence of a (ξ, µ) ̸= 0 in the separation theorem. Finally,
as y > f(x) − f(x) and y ≥ ξ⊤(x − x), for any given y, we have that f(x) − f(x) ≥ ξ⊤(x − x) 1,
which leads to the subgradient inequality.

Notice that this result provides necessary and sufficient conditions for optimality for convex prob-
lems. These conditions can be extended to the unconstrained case as well, which is presented in
Corollary 16.3.

Corollary 16.3 (optimality in open sets). Under the conditions of Theorem 16.2, if S is open, x
is an optimal solution to P if and only if 0 ∈ ∂f(x).

Proof. From Theorem 16.2, x is optimal if and only if ξ is a subgradient at x with ξ⊤(x− x) ≥ 0
for all x ∈ S. Since S is open, x = x − λξ ∈ S for some λ > 0, and thus −λ||ξ||2 ≥ 0, implying
ξ = 0.

Notice that, if S is open, then the only way to attain the condition ξ⊤(x − x) ≥ 0 is if ξ = 0
itself. This is particularly relevant in the context of nondifferentiable functions, as we will see
later. Another important corollary is the classic optimality condition ∇f(x) = 0, which we state
below for completeness.

Corollary 16.4 (optimality for differentiable functions). Suppose that S ⊆ Rn is a nonempty
convex set and f : S → R a differentiable convex function on S. Then x ∈ S is optimal if and
only if ∇f(x)⊤(x − x) ≥ 0 for all x ∈ S. Moreover, if S is open, then x is optimal if and only if
∇f(x) = 0.

The proof for Corollary 16.4 is the same as Theorem 16.2 under a setting where ∂(x) = {∇f(x)}
due to the differentiability of f .

Let us consider two examples. First, consider the problem

1Notice that, on the line of nonnegative reals, for a same y, f(x)− f(x) is always on the ’right side’ of ξ⊤(x− x)
because it is an open interval.
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min.

(
x1 −

3

2

)2

+ (x2 − 5)2

s.t.: − x1 + x2 ≤ 2

2x1 + 3x2 ≤ 11

x1 ≥ 0

x2 ≥ 0

Figure 16.2 presents a plot of the feasible region S, which is form by the intersection of the two
halfspaces, and the level curves of the objective function, with some of the values indicated in the
curves. Notice that that this is a convex problem.
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Figure 16.2: Example 1

The arrow shows the gradient ∇f(x) at x = (1, 3). Notice that this point is special since at
that point, no vector x − x can be found forming an angle greater than 90◦ with ∇f(x), that is
∇f(x)⊤(x − x) ≥ 0 for any x ∈ S, which means that x is optimal. Since the problem is convex,
that is in fact the global optimum for this problem.

Figure 16.3 shows a similar situation, but now with one of the constraints being nonlinear. Notice
that of the two points highlighted ((1,2) in orange and (2,1) in purple), the optimality condition
only holds for (2,1). For example, for x = (2, 1) and x = (1, 2) the vector x − x forms a angle
greater than 90◦ with the gradient of f at x, ∇f(x), and thus the condition ∇f(x)(x−x) ≥ 0 does
not hold for all S. The condition does hold for x = (2, 1), as can be seen in Figure 16.3.
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Figure 16.3: Example 2

A geometrical interpretation of the optimality condition ξ⊤(x−x) ≥ 0 is as follows. If there exists
a subgradient ξ (or a gradient ∇f(x) if f is differentiable) that serves as a separating hyperplane
between the level curve of f at x and the feasible region S, then there can be no feasible point
further into the lower level set defined by that level curve. Ultimately, this means that there is
no feasible point with smaller objective function value to be found. This is why the separation
theorem from Lecture 2 plays an important role here, since it can be used to state that the feasible
options have been exhausted in terms of potential directions of decrease of objective function value.

16.3.1 Optimality conditions for unconstrained problems

We have developed most of the concepts required to state optimality conditions for unconstrained
optimisation problems, as presented in Corollaries 16.3 and 16.4. We now take an alternative route
in which we do not take into account the feasibility set, but only the differentiability of f . This
will be useful as it will allow us to momentarily depart from the assumption of convexity, which
was used to state Theorem 16.2.

First-order optimality conditions

Let us start defining what it means to be a descent direction.

Theorem 16.5 (descent direction). Suppose f : Rn → R is differentiable at x. If there is d such
that ∇f(x)⊤d < 0, there exists δ > 0 such that f(x+ λd) < f(x) for each λ ∈ (0, δ), so that d is a
descent direction of f at x.
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Proof. By differentiability of f at x, we have that

f(x+ λd)− f(x)
λ

= ∇f(x)⊤d+ ||d||α(x;λd).

Since ∇f(x)⊤d < 0 and α(x;λd)→ 0 when λ→ 0 for some λ ∈ (0, δ), we must have f(x+ λd)−
f(x) < 0.

The proof uses the first-order expansion around x to show that, f being differentiable, the condition
∇f(x)⊤d < 0 implies that f(x+λd) < f(x), or put in words, that a step in the direction d decreases
the objective function value.

We can derive the first-order optimality condition in Corollary 16.4 as a consequence from Theorem
16.5. Notice, however, that since convexity is not assumed, all we can say is that this condition is
necessary (but not sufficient) for local optimality.

Corollary 16.6 (first-order necessary condition). Suppose f : Rn → R is differentiable at x. If x
is a local minimum, then ∇f(x) = 0.

Proof. By contradiction, suppose that ∇f(x) ̸= 0. Letting d = −∇f(x), we have that ∇f(x)⊤d =
−||∇f(x)||2 < 0. By Theorem 16.5, there exists a δ > 0 such that f(x + λd) < f(x) for all
λ ∈ (0, δ), thus contradicting the local optimality of x.

Notice that Corollary 16.6 only holds in one direction. The proof uses contradiction once again,
where we assume local optimality of x and show that having ∇f(x) ̸= 0 contradicts the local
optimality of x, our initial assumption. To do that, we simply show that having any descent
direction d (we use −∇f(x) since in this setting it is guaranteed to exist as ∇f(x) ̸= 0) would
mean that small step λ can reduce the objective function value, contradicting the local optimality
of x.

Second-order optimality conditions

We now derive necessary conditions for local optimality of x based on second-order differentiability.
As we will see, it requires that the Hessian H(x) of f(x) at x is positive semidefinite.

Theorem 16.7 (second-order necessary condition). Suppose f : Rn → R is twice differentiable at
x. If x is a local minimum, then H(x) is positive semidefinite.

Proof. Take an arbitrary direction d. As f is twice differentiable, we have:

f(x+ λd) = f(x) + λ∇f(x)⊤d+ 1

2
λ2d⊤H(x)d+ λ2||d||2α(x;λd)

since x is a local minimum, Corollary 16.6 implies that ∇f(x) = 0 and f(x+ λd) ≥ f(x).
Rearranging terms and dividing by λ2 > 0 we obtain

f(x+ λd)− f(x)
λ2

=
1

2
d⊤H(x)d+ ||d||2α(x;λd).

Since α(x;λd)→ 0 as λ→ 0, we have that d⊤H(x)d ≥ 0.
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The second-order conditions can be used to attest local optimality of x. In the case where H(x) is
positive definite, then this second order condition becomes sufficient for local optimality, since it
implies that the function is ’locally convex’ for a small enough neighbourhood Nϵ(x).

In case f is convex, then the first-order condition ∇f(x) = 0 becomes also sufficient for attesting
the global optimality of x. Recall that f is convex if and only if H(x) is positive semidefinite for
all x ∈ Rn, meaning that in this case the second-order necessary conditions are also satisfied at x.

Theorem 16.8. Let f : Rn → R be convex. Then x is a global minimum if and only if ∇f(x) = 0.

Proof. From Corollary 16.6, if x is a global minimum, then ∇f(x) = 0. Now, since f is convex,
we have that

f(x) ≥ f(x) +∇f(x)⊤(x− x)

Notice that ∇f(x) = 0 implies that ∇f(x)⊤(x − x) = 0 for each x ∈ Rn, thus implying that
f(x) ≤ f(x) for all x ∈ Rn.



Chapter 17

Unconstrained optimisation
methods: part 1

17.1 A prototype of an optimisation method

Most, if not all, optimisation methods are based on the conceptual notion of successively obtaining
directions of potential improvement and suitable step sizes in this direction, until a convergence
or termination criterion (collectively called stopping criteria) is satisfied.

Considering what we have seen so far, we have now the concepts required for describing several
unconstrained optimisation methods. We start by posing a conceptual optimisation algorithm
in a pseudocode structure. This will be helpful in identifying the elements that differentiate the
methods we will discuss.

Algorithm 10 Conceptual optimisation algorithm

1: initialise. iteration count k = 0, starting point x0
2: while stopping criteria are not met do
3: compute direction dk
4: compute step size λk
5: xk+1 = xk + λkdk
6: k = k + 1
7: end while
8: return xk.

Algorithm 23 has two main elements, namely the computation of the direction dk and the step size
λk at each iteration k. In what follows, we present some univariate optimisation methods that can
be employed to calculate step sizes λk. These methods are commonly referred to as line search
methods.

17.2 Line search methods

Finding an optimal step size λk is in itself an optimisation problem. The name line search refers
to the fact that it consists of a unidimensional search as λk ∈ R.
Suppose that f : Rn → R is differentiable. We define the unidimensional function θ : R→ R as

θ(λ) = f(x+ λd).

249
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Assuming differentiability, we can use the first-order necessary condition θ′(λ) = 0 to obtain
optimal values for the step size λ. This means solving the system

θ′(λ) = d⊤∇f(x+ λd) = 0

which might pose challenges. First, d⊤∇f(x+ λd) is often nonlinear in λ, with optimal solutions
not trivially resting at boundary points for an explicit domain of λ. Moreover, recall that θ′(λ) = 0
is not a sufficient condition for optimality in general, unless properties such as convexity can be
inferred.

In what follows, we assume that strict quasiconvexity holds and therefore θ′(λ) = 0 becomes
necessary and sufficient for optimality. In some contexts, unidimensional strictly quasiconvex
functions are called unimodal.

Theorem 17.1 establishes the mechanism underpinning line search methods. In that, we use the
assumption that the function has a unique minimum (a consequence of being strictly quasiconvex)
to successively reduce the search space until the optimal is contained in a sufficiently small interval
l within an acceptable tolerance.

Theorem 17.1 (Line search reduction). Let θ : R → R be strictly quasiconvex over the interval
[a, b], and let λ, µ ∈ [a, b] such that λ < µ. If θ(λ) > θ(µ), then θ(z) ≥ θ(µ) for all z ∈ [a, λ]. If
θ(λ) ≤ θ(µ), then θ(z) ≥ θ(λ) for all z ∈ [µ, b].

θ θ

θ(λ)

θ(µ)

a bλ µ

a b

θ(λ)

θ(µ)

λ µa b

a b

Figure 17.1: Applying Theorem 17.1 allows to iteratively reduce the search space.

Figure 17.1 provides an illustration of Theorem 17.1. The line below the x-axis illustrates how the
search space can be reduced between two successive iterations. In fact, most line search methods
will iteratively reduce the search interval (represented by [a, b]) until the interval is sufficiently
small to be considered “a point” (i.e., is smaller than a set threshold l).

Line searches are exact when optimal step sizes λ∗k are calculated at each iteration k, and inexact
when arbitrarily good approximations for λ∗k are used instead. As we will see, there is a trade-off
between the number iterations required for convergence and the time taken per iteration that must
be taken into account when choosing between exact and inexact line searches.

17.2.1 Exact line searches

Exact methods are designed to return the optimal step value λ∗ within a pre-specified tolerance l.
In practice, it means that these methods return an interval [ak, bk] such that bk − ak ≤ l.
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Uniform search

The uniform search consists of breaking the search domain [a, b] into N slices of uniform size

δ = |b−a|
N . This leads to a one-dimensional grid with grid points an = a0 + nδ, n = 0 . . . N where

a0 = a and aN = b. We can then set λ̂ to be

λ̂ = arg min
i=0,...,n

f(ai)

From Theorem 17.1, we know that the optimal step size λ∗ ∈ [λ̂− δ, λ̂+ δ]. The process can then

be repeated, by making a = λ̂ − δ and b = λ̂ + δ (see Figure 17.2). until |a − b| is less than a
prespecified tolerance l. Without enough repetition of the search, the uniform search becomes an
inexact search.

This type of search is particularly useful when setting values for hyperparameters in algorithms
(that is, user defined parameters that influence the behaviour of the algorithm) of performing
any sort of search in a grid structure. One concept related to this type of search is what is
known as the coarse-to-fine approach. Coarse-to-fine approaches use sequences of increasingly fine
approximations (i.e., gradually increasing n) to obtain computational savings in terms of function
evaluations. In fact, the number of function evaluations a line search method executes is one of
the indicators of its efficiency.

θ

a = a0 a1 a2 . . . an = b

λ̂− δ λ̂+ δλ̂

θ(a2)

Figure 17.2: Grid search with 5 points; Note that θ(a2) = mini=0,...,n θ(ai).

Dichotomous search

The dichotomous search is an example of a sequential line search method, in which evaluations
of the function θ at a current iteration k are reused in the next iteration k + 1 to minimise the
number of function evaluations and thus improve performance.

The word dichotomous refer to the mutually exclusive parts that the search interval [a, b] is divided
at each iteration. We start by defining a distance margin ϵ and defining two reference points
λ = a+b

2 − ϵ and µ = a+b
2 + ϵ. Using the function values θ(λ) and θ(µ), we proceed as follows.

1. If θ(λ) < θ(µ), then move to the left by making ak+1 = ak and bk+1 = µk;

2. Otherwise, if θ(λ) > θ(µ), then move to the right by making ak+1 = λk and bk+1 = bk.

Notice that, the assumption of strict quasiconvexity implies that θ(λ) = θ(µ) cannot occur, but in
a more general setting one must make sure a criterion for resolving the tie. Once the new search
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interval [ak+1, bk+1] is updated, new reference points λk+1 and µk+1 are calculated and the process
is repeated until |a− b| ≤ l. The method is summarised in Algorithm 24. Notice that, at any given
iteration k, one can calculate what will be the size |ak+1 − bk+1|, given by

bk+1 − ak+1 =
1

2k
(b0 − a0) + 2ϵ

(
1− 1

2k

)
.

This is useful in that it allows predicting the number of iterations Algorithm 24 will require
before convergence. Figure 17.3 illustrates the process for two distinct functions. Notice that the
employment of the central point a+b

2 as the reference to define the points λ and µ turns the method
robust in terms of interval reduction at each iteration.

Algorithm 11 Dichotomous search

1: initialise. distance margin ϵ > 0, tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = ak+bk

2 − ϵ, µk = ak+bk
2 + ϵ

4: if θ(λk) < θ(µk) then
5: ak+1 = ak, bk+1 = µk

6: else
7: ak+1 = λk, bk+1 = bk
8: end if
9: k = k + 1

10: end while
11: return λ = ak+bk

2
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θ2(µ)

θ2(λ)

λ µ
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Figure 17.3: Using the midpoint (a+ b)/2 and Theorem 17.1 to reduce the search space.

Golden section search*

The golden section search is named after the golden ratio φ = 1+
√
5

2 , of which the inverse is used
as the ratio of reduction for the search interval [a, b] at each iteration.

Consider that, once again, we rely on two reference points λk and µk. The method is a consequence
of imposing two requirements for the line search:

1. the reduction in the search interval should not depend on whether θ(λk) > θ(µk) or vice-versa.
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2. at each iteration, we perform a single function evaluation, thus making λk+1 = µk if θ(λk) >
θ(µk) or vice-versa.

From requirement 1, we can infer that bk+1 − ak+1 = bk − λk = µk − ak is required. To find
the interval reduction rate α ∈ (0, 1) that would allow so, we define µk = ak + α(bk − ak) and,
consequently, λk = ak + (1− α)(bk − ak). Notice that this makes bk+1 − ak+1 = α(bk − ak).
Notice the following. Suppose that θ(λk) > θ(µk) at iteration k. We then make ak+1 = λk and
bk+1 = bk, a ”movement to the right”. From requirement 2, we also make λk+1 = µk so that
θ(λk+1) = θ(µk), avoiding a function evaluation.

From the above, we can calculate the ratio α that would allow the method to work. Notice that

λk+1 = µk

ak+1 + (1− α)(bk+1 − ak+1) = µk

(1− α)[α(bk − ak)] = µk − λk
(α− α2)(bk − ak) = ak + α(bk − ak)− [ak + (1− α)(bk − αk)]

α2 + α− 1 = 0

to which α = 2
1+

√
5
= 0.618... = 1

φ is the positive solution. Clearly, the same result is obtained if

one consider θ(λk) < θ(µk). Algorithm 25 summarises the golden section search. Notice that at
each iteration, only a single additional function evaluation is required.

Algorithm 12 Golden section search

1: initialise. tolerance l > 0, [a0, b0] = [a, b], α = 0.618, k = 0
2: λk = ak + (1− α)(bk − ak), µk = ak + α(bk − ak)
3: while bk − ak > l do
4: if θ(λk) > θ(µk) then
5: ak+1 = λk, bk+1 = bk, λk+1 = µk, and
6: µk+1 = ak+1 + α(bk+1 − ak+1). Calculate θ(µk+1)
7: else
8: ak+1 = ak, bk+1 = µk, µk+1 = λk, and
9: λk+1 = ak+1 + (1− α)(bk+1 − ak+1). Calculate θ(λk+1)

10: end if
11: k ← k + 1
12: end while
13: return λ = ak+bk

2

Comparing the above method for a given accuracy l, the required number of function evaluations
is:

min




n :

uniform: n ≥ b1−a1

l/2 − 1

dichotomous: (1/2)n/2 ≤ l
b1−a1

golden section: (0.618)n−1 ≤ l
b1−a1





For example: suppose we set [a, b] = [−10, 10] and l = 10−6. Then the number of iterations
required for convergence is

• uniform: n = 4× 106;
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• dichotomous: n = 49;

• golden section: n = 36.

A variant of the golden section method uses Fibonacci numbers to define the ratio of interval
reduction. Despite being marginally more efficient in terms of function evaluations, the overhead
of calculating Fibonacci numbers has to be taken into account.

Bisection search

Differently form the previous methods, the bisection search relies on derivative information to infer
whether how the search interval should be reduced. For that, we assume that θ(λ) is differentiable
and convex.

We proceed as follows. If θ′(λk) = 0, then λk is a minimiser. Otherwise

1. if θ′(λk) > 0, then, for λ > λk, we have θ′(λk)(λ− λk) > 0, which implies θ(λ) ≥ θ(λk) since
θ is convex. Therefore, the new search interval becomes [ak+1, bk+1] = [ak, λk].

2. if θ′(λk) < 0, we have θ′(λk)(λ− λk) > 0 (and thus θ(λ) ≥ θ(λk)) for λ < λk. Thus, the new
search interval becomes [ak+1, bk+1] = [λk, bk].

As in the dichotomous search, we set λk = 1
2 (bk + ak), which provides robust guarantees of search

interval reduction. Notice that the dichotomous search can be seen as a bisection search in which
the derivative information is estimated using the difference of function evaluation at two distinct
points. Algorithm 13 summarises the bisection method.

Algorithm 13 Bisection method

1: initialise. tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = (bk+ak)

2 and evaluate θ′(λk)
4: if θ′(λk) = 0 then return λk
5: else if θ′(λk) > 0 then
6: ak+1 = ak, bk+1 = λk
7: else
8: ak+1 = λk, bk+1 = bk
9: end if

10: k ← k + 1
11: end while
12: return λ = ak+bk

2

17.2.2 Inexact line search

Often, it is worth sacrificing optimality of the step size λk for the overall efficiency of the solution
method in terms of solution time.

There are several heuristics that can be employed to define step sizes and their performance are
related to how the directions dk are defined in Algorithm 23. Next, we present the Armijo rule,
arguably the most used technique to obtain step sizes in efficient implementations of optimisation
methods.
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Armijo rule

The Armijo rule is a condition that is tested to decide whether a current step size λ is acceptable
or not. The step size λ is considered acceptable if

f(x+ dλ)− f(x) ≤ αλ∇f(x)⊤d.

One way of understanding the Armijo rule is to look at what it means in terms of the function
θ(λ) = f(x+ λd). Notice that, at λ = 0, the Armijo rule becomes

θ(λ)− θ(0) ≤ αλθ′(0)
θ(λ) ≤ θ(0) + αλθ′(0). (17.1)

That is, θ(λ) has to be less than the deflected linear extrapolation of θ at λ = 0. The deflection is
given by the pre-specified parameter α. In case λ does not satisfy the test in (17.1), λ is reduced
by a factor β ∈ (0, 1) until the test in (17.1) is satisfied.

λ βλ

acceptable λk acceptable λk

θapp(λ)

θ(λ)
θapp(βλ)

θ(βλ)

θapp(λ) = θ(0) + αλ(θ′(0)) θapp(λ) = θ(0) + αλ(θ′(0))

θ(0) + λ(θ′(0)) θ(0) + λ(θ′(0))

Figure 17.4: At first λ0 = λ is not acceptable; after reducing the step size to λ1 = βλ, it enters
the acceptable range where θ(λk) ≤ θapp(λk) = θ(0) + αλk(θ

′(0)).

In Figure 17.4, we can see the acceptable region for the Armijo test. At first, λ does not satisfy the
condition (17.1), being then reduced to βλ, which, in turn, satisfies (17.1). In this case, λk would
have been set βλ. Suitable values for α are within (0, 0.5] and for β are within (0, 1), trading of
precision (higher values) and number of tests before acceptance (lower values).

The Armijo rule is called backtracking in some contexts, due to the successive reduction of the step
size caused by the factor β ∈ (0, 1). Some variants might also include rules that prevent the step
size from becoming too small, such as θ(δλ) ≥ θ(0) + αδλθ′(0), with δ > 1.

17.3 Unconstrained optimisation methods

We now focus on developing methods that can be employed to optimise f : Rn → R. We start
with coordinate descent method, which is derivative free, to then discuss the gradient method and
Newton’s method. In essence, the main difference between the three methods is how the directions
dk in Algorithm 23 are determined. Also, all of these methods rely on line searches to define optimal
step sizes, which can be any of the methods seen before or any other unidimensional optimisation
method.
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17.3.1 Coordinate descent

The cordinate descent method relies on a simple yet powerful idea. By focusing on one coordinate
at the time, the method trivially derives directions d having di = 1 for coordinate i and dj ̸=i = 0
otherwise. As one would suspect, the order in which the coordinates are selected influences the
performance of the algorithm. Some known variants include:

1. Cyclic: coordinates are considered in order 1, . . . , n;

2. Double-sweep: swap the coordinate order at each iteration;

3. Gauss-Southwell: choose components with largest ∂f(x)
∂xi

;

4. Stochastic: coordinates are selected at random.

Algorithm 14 summarises the general structure of the coordinate descent method. Notice that the
for-loop starting in Line 3 uses the cyclic variant of the coordinate descent method.

Algorithm 14 Coordinate descent method (cyclic)

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0
2: while ||xk+1 − xk|| > ϵ do
3: for j = 1, . . . n do
4: d = {di = 1, if i = j; di = 0, if i ̸= j}
5: λj = argminλ∈R

{
f(xkj + λdj)

}

6: xk+1
j = xkj + λjdj

7: end for
8: k = k + 1
9: end while

10: return xk

Figure 17.5 shows the progress of the algorithm when applied to solve

f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using the golden section method as line search.

The coordinate descent method is the strategy employed in several other methods, such as the
Gauss-Seidel method for solving linear system of equations, which is why some references refer
to each of these iterations as Gauss-Seidel steps. Also, when a collection of coordinates is used
to derive a direction, the term block coordinate descent is used, though a method for deriving
directions for each block is still necessary, for example the gradient method presented next.

17.3.2 Gradient (descent) method

The gradient descent uses the function gradients as the search direction d. Before we present the
method, let us present a result that justifies the use of gradients to derive search directions.

Lemma 17.2. Suppose that f : Rn → R is differentiable at x ∈ Rn and ∇f(x) ̸= 0. Then

d = − ∇f(x)
||∇f(x)|| is the direction of steepest descent of f at x.
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Figure 17.5: Coordinate descent method applied to f . Convergence is observed in 4 steps for a
tolerance ϵ = 10−5

Proof. From differentiability of f , we have

f ′(x; d) = lim
λ→0+

f(x+ λd)− f(x)
λ

= ∇f(x)⊤d.

Thus, d = argmin||d||≤1

{
∇f(x)⊤d

}
= − ∇f(x)

||∇f(x)||

In the proof, we use the differentiability to define a directional derivative for f at direction d, that
is, the change in the value of f by a move of size λ > 0 in the direction d, which is given by
∇f(x)⊤d. If we minimise this term in d for ||d||2 ≤ 1, we observe that d is a vector of length one

that has the opposite direction of ∇f(x), thus d = − ∇f(x)
||∇f(x)|| .

That provides us with the insight that we can use ∇f(x) to derive (potentially good) directions
for optimising f . Notice that the direction employed is the opposite direction of the gradient for
minimisation problems, being the opposite in case of maximisation. That is the reason why the
gradient method is called the steepest descent method in some references, though gradient and
steepest descent might refer to different methods in specific contexts.

Using the gradient ∇f(x) is also a convenience as it allows for the definition of a straightforward
convergence condition. Notice that, if ∇f(x) = 0, then the algorithm stalls, as xk+1 = xk+λkdk =
xk. In other words, the algorithm converges to points x ∈ Rn that satisfy the first-order necessary
conditions ∇f(x) = 0.

The gradient method has many known variants that try to mitigate issues associated with the poor
convergence caused by the natural ’zigzagging’ behaviour of the algorithm (see, for example the
gradient method with momentum and the Nesterov method).

There are also variants that only consider the partial derivatives of some (and not all) of the
dimensions i = 1, . . . , n forming blocks of coordinates at each iteration. If these blocks are randomly
formed, these methods are known as stochastic gradient methods.

In Algorithm 15 we provide a pseudocode for the gradient method. In Line 2, the stopping condition
for the while-loop is equivalent of testing ∇f(x) = 0 for a tolerance ϵ.
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Algorithm 15 Gradient method

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do

3: d = − ∇f(xk)
||∇f(x)||

4: λ = argminλ∈R {f(xk + λd)}
5: xk+1 = xk + λdj
6: k = k + 1
7: end while
8: return xk.

Figure 17.6 presents the progress of the gradient method using exact (bisection) and inexact
(Armijo rule with α = 0.1 and β = 0.7) line searches. As can be expected, when an inexact
line search is employed, the method overshoots slightly some of the steps, taking a few more
iterations to converge.
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Figure 17.6: Gradient method applied to f . Convergence is observed in 10 steps using exact line
search and 19 using Armijo’s rule (for ϵ = 10−5)

17.3.3 Newton’s method

One can think of gradient methods as using first-order information to derive directions of improve-
ment, while Newton’s method consists of a step forward also incorporating second-order informa-
tion. This can be shown to produce better convergence properties, but at the expense of the extra
computational burden incurred by calculating and manipulating Hessian matrices.

The idea of the Newton’s method is the following. Consider the second-order approximation of f
at xk, which is given by

q(x) = f(xk) +∇f(xk)⊤(x− xk) +
1

2
(x− xk)⊤H(xk)(x− xk)
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The method uses as direction d that of the extremum of the quadratic approximation at xk, which
can be obtained from the first-order condition ∇q(x) = 0. This renders

∇q(x) = ∇f(xk) +H(xk)(x− xk) = 0. (17.2)

Assuming that H−1(xk) exists, we can use (17.2) to obtain the following update rule, which is
known as the Newton step

xk+1 = xk −H−1(xk)∇f(xk) (17.3)

Notice that the “pure” Newton’s method has embedded in the direction of the step, its length (i.e.,
the step size) as well. In practice, the method uses d = −H−1(xk)∇f(xk) as a direction combined
with a line search to obtain optimal step sizes and prevent divergence (that is, converge to −∞)
in cases where the second-order approximation might lead to divergence. Fixing λ = 1 renders
the natural Newton’s method, as derived in (17.3). The Newton’s method can also be seen as
employing Newton-Raphson method to solve the system of equations that describe the first order
conditions of the quadratic approximation at xk.

Figure 17.7 shows the calculation of direction d = −H−1(xk)∇f(xk) for the first iteration of
the Newton’s method. Notice that the direction is the same as the that of the minimum of the
quadratic approximation q(x) at xk. The employment of a line search allows for overshooting the
exact minimum, making the search more efficient.
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Figure 17.7: The calculation of the direction d = x∗−x0 in the first two iterations of the Newton’s
method with step size λ fixed to 1 (the pure Newton’s method, in left to right, top to bottom order).
Notice in blue the level curves of the quadratic approximation of the function at the current point
xk and how it improves from one iteration to the next.

The Newton’s method might diverge if the initial point is too far from the optimal and fixed step
sizes (such as λ = 1) are used, since the quadratic approximation minimum and the actual function
minimum can become drastically and increasingly disparate. Levenberg-Marquardt method and
other trust-region-based variants address convergence issues of the Newton’s method. As a general
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rule, combining the method with an exact line search of a criteria for step-size acceptance that
require improvement (such as employing the Armijo rule for defining the step sizes) if often sufficient
for guaranteed convergence. Figure 17.8 compares the convergence of the pure Newton’s method
and the method employing an exact line search.
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Figure 17.8: A comparison of the trajectory of both Newton’s method variants. Notice that in the
method using the exact line search, wile the direction d = x∗−x0 is utilised, the step size is larger
in the first iteration.

Algorithm 16 presents a pseudocode for the Newton’s method. Notice that in Line 3, an inversion
operation is required. One might be cautious about this operation, since as ∇f(xk) tends to zero,
the Hessian H(xk) tends to become singular, potentially causing numerical instabilities.

Algorithm 16 Newton’s method

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −H−1(xk)∇f(xk)
4: λ = argminλ∈R {f(xk + λd)}
5: xk+1 = xk + λd
6: k = k + 1
7: end while
8: return xk

Figure 17.9 shows the progression of the Newton’s method for f with exact and inexact line
searches.
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Figure 17.9: Newton’s method applied to f . Convergence is observed in 4 steps using exact line
search and 27 using Armijo’s rule (ϵ = 10−5)
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Chapter 18

Unconstrained optimisation
methods: part 2

18.1 Unconstrained optimisation methods

We will now discuss to variants of the gradient and Newton methods that try to exploit the com-
putational simplicity of gradient methods while encoding of curvature information as the Newton’s
method, but without explicitly relying on second-order derivatives (i.e., Hessian matrices).

18.1.1 Conjugate gradient method

The conjugate gradient method use the notion of conjugacy to guide the search for optimal solu-
tions. The original motivation for the method comes from quadratic problems, in which one can
use conjugacy to separate the search for the optimum of f : Rn → R into n exact steps.

The concept of conjugacy

Let us first define the concept of conjugacy.

Definition 18.1. Let H be an n × n symmetric matrix. The vectors d1, . . . , dn are called (H-
)conjugate if they are linearly independent and d⊤i Hdj = 0, for all i, j = 1, . . . , n such that i ̸= j.

Notice that H-conjugacy (or simply conjugacy) is a generalisation of orthogonality under the
linear transformation imposed by the matrix H. Notice that orthogonal vectors are H-conjugate
for H = I. Figure 18.1 illustrate the notion of conjugacy between two vectors d1 and d2 that are
H-conjugate, being H the Hessian of the underlying quadratic function. Notice how it allows one
to generate, from direction d1, a direction d2 that, if used in combination with an exact line search,
would take us to the centre of the curve.

263
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Figure 18.1: d1 and d2 are H-conjugates; on the left, H = I.

One can use H-conjugate directions to find optimal solutions for the quadratic function f(x) =
c⊤x + 1

2x
⊤Hx, where H is a symmetric matrix. Suppose we know directions d1, . . . , dn that are

H-conjugate. Then, given an initial point x0, any point x can be described as x = x0+
∑n

j=1 λjdj .

We can then reformulate f(x) as a function of the step size λ, i.e.,

f(x) = F (λ) = c⊤(x0 +
n∑

j=1

λjdj) +
1

2
(x0 +

n∑

j=1

λjdj)
⊤H(x0 +

n∑

j=1

λjdj)

=

n∑

j=1

[
c⊤(x0 + λjdj) +

1

2
(x0 + λjdj)

⊤H(x0 + λjdj)
]
.

This reformulation exposes an important properties that having conjugate directions d1, . . . , dn
allows us to explore: separability. Notice that F (λ) =

∑n
j=1 Fj(λj), where Fj(λj) is given by

Fj(λj) = c⊤(x0 + λjdj) +
1

2
(x0 + λjdj)

⊤H(x0 + λjdj),

and is, ultimately, a consequence of the linear independence of the conjugate directions. Assuming
that H is positive definite, and thus that first-order conditions are necessary and sufficient for
optimality, we can then calculate optimal λj for j = 1, . . . , n as

F ′
j(λj) = 0

c⊤dj + x⊤0 Hdj + λjd
⊤
j Hdj = 0

λj = −
c⊤dj + x⊤0 Hdj

d⊤j Hdj
, for all j = 1, . . . , n.

This result can be used to devise an iterative method that can obtain optimal solution for quadratic
functions in exactly n iterations. From an initial point x0 and a collection ofH-conjugate directions
d1, . . . , dn, the method consists of the successively executing the following step

xk = xk−1 + λkdk, where λk = −c
⊤dk + x⊤k−1Hdk

d⊤k Hdk
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Figure 18.2: Optimising f with the conjugate method and coordinate descent (left). For H = I,
both methods coincide (right)

Notice the resemblance this method hold with the coordinate descent method. In case H = I, then
the coordinate directions given by di = 1 and dj ̸=i = 0 are H-conjugate and thus, the coordinate
descent method converges in two iterations. Figure 18.2 illustrates this behaviour. Notice that, on
the left, the conjugate method converges in exactly two iterations, while coordinate descent takes
several steps before finding the minimum. On the right, both methods become equivalent, since,
when H = I, the coordinate directions become also conjugate to each other.

Generating conjugate directions

The missing part at this point is how one can generate H-conjugate directions. This can be done
efficiently using an adaptation of the Gram-Schmidt procedure, typically employed to generate
orthonormal bases.

We intend to build a collection of conjugate directions d0, . . . , dn−1, which can be achieved provided
that we have a collection of linearly independent vectors ξ0, . . . , ξn−1.

The method proceed as follows.

1. First, set d0 = ξ0 as a starting step.

2. At a given iteration k+1, we need to set the coefficients αi
k+1 such that dk+1 is H-conjugate

to d0, . . . , dk and formed by adding ξk+1 to a linear combination of d0, . . . , dk, that is

dk+1 = ξk+1 +

k∑

l=0

αl
k+1dl.
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3. To obtain H-conjugacy one must observe that, for each i = 0, . . . , k,

dk+1
⊤Hdi = ξk+1

⊤Hdi +

(
k∑

l=0

αl
k+1dl

)⊤

Hdi = 0.

Due to the H-conjugacy, d⊤l Hdk = 0 for all l ̸= k. Thus the value of αk+1 is

αi
k+1 =

−ξ⊤k+1Hdi

d⊤i Hdi
, for i = 0, . . . , k. (18.1)

Gradients and conjugate directions

The next piece required for developing a method that could exploit conjugacy is the definition of
what collection of linearly independent vectors ξ0, . . . , ξn−1 could be used to generate conjugate
directions. In the setting of developing an unconstrained optimisation method, the gradients
∇f(xk) can play this part, which is the key result in Theorem 18.2.

Theorem 18.2. Let f(x) = c⊤x+ 1
2x

⊤Hx, where H is an n×n symmetric matrix. Let d1, . . . , dn
be H-conjugate, and let x0 be an arbitrary starting point. Let λj be the optimal solution to Fj(λj) =
f(x0 + λjdj) for all j = 1, . . . , n. Then, for k = 1, . . . , n we must have:

1. xk+1 is optimal to min. {f(x) : x− x0 ∈ L(d1, . . . , dk)} where

L(d1, . . . , dk) =
{∑k

j=1 µjdj : µj ∈ R, j = 1, . . . , k
}
;

2. ∇f(xk+1)
⊤dj = 0, for all j = 1, . . . , k;

The proof of this theorem is based on the idea that, for a given collection of conjugate directions
d0, . . . , dk, xk will be optimal in the space spanned by the conjugate directions d0, . . . , dk, meaning
that the partial derivatives of F (λ) for these directions is zero. This phenomena is sometimes called
the expanding manifold property, since at each iteration L(d0, . . . , dk) expands in one independent
(conjugate) direction at the time. To verify the second point, notice that the optimality condition
for λj ∈ argmin {Fj(λj)} is d⊤j ∇f(x0 + λdj) = 0.

Conjugate gradient method

We have now all parts required for describing the conjugate gradient method. The method uses the
gradients ∇f(xk) as linearly independent vectors to generate conjugate directions, which are then
used as search directions dk.

In specific, the method operates generating a sequence of iterates

xk+1 = xk + λkdk,

where d0 = −∇f(x0). Given a current iterate xk+1 with −∇f(xk+1) ̸= 0, we use Gram-Schmidth
procedure, in particular (18.1), to generate a conjugate direction dk+1 by making the linearly
independent vector ξk+1 = ∇f(xk+1). Thus, we obtain

dk+1 = −∇f(xk+1) + αkdk, with αk =
∇f(xk+1)

⊤Hdk
d⊤k Hdk

. (18.2)
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Notice that, since ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = λkHdk and dk = −∇f(xk) + αk−1dk−1,
αk can be simplified to be

αk =
∇f(xk+1)

⊤Hdk
d⊤k Hdk

=
∇f(xk+1)

⊤(∇f(xk+1)−∇f(xk))
(−∇f(xk) + αk−1dk−1)⊤(∇f(xk+1)−∇f(xk))

=
||∇f(xk+1)||2
||∇f(xk)||2

,

where the last relation follows from Theorem 18.2. Algorithm 24 summarises the conjugate gradient
method.

Algorithm 17 Conjugate gradient method

1: initialise. tolerance ϵ > 0, initial point x0, direction d0 = −∇f(x0), k = 1
2: while ||∇f(xk)|| > ϵ do
3: y0 = xk−1

4: d0 = −∇f(y0)
5: for j = 1, . . . , n do
6: λj = argminλ≥0 {f(yj−1 + λdj−1)}
7: yj = yj−1 + λjdj−1

8: dj = −∇f(yj) + αjdj−1, where αj =
||∇f(yj)||2

||∇f(yj−1)||2 .
9: end for

10: xk = yn, k = k + 1
11: end while
12: return xk.

The conjugate gradient method using αk = ||∇f(xk+1)||2
||∇f(xk)||2 is due to Fletcher and Reeves.

An alternative version of the method uses

αk =
∇f(xk+1)

⊤(∇f(xk+1)−∇f(xk))
||∇f(xk)||

,

which is known for having better numerical properties for solving problems that are not quadratic.

Figure 18.3 illustrates the behaviour of the conjugate gradient method when applied to solve
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10) using both exact and inexact line searches.

If f : Rn → R is a quadratic function, then the method is guaranteed to converge in exactly n
iterations. However, the method can be applied to any differentiable function f , in which setting
the method behaves as successively solving quadratic approximations of f , in a similar fashion
to that of Newton’s method, but without requiring second-order (Hessian) information, which is
the most demanding aspect associated with Newton’s method. When employed to non-quadratic
functions, the process of obtaining conjugate directions is restarted at the current point xk after
n steps (represented in the loop staring in Line 5 in Algorithm 24).

Equation (18.2) exposes an important property of the conjugate gradient method. In general,
the employment of second-order terms is helpful for the optimisation method because it encodes
curvature information on the definition of the search direction. The conjugate gradient method is
also capable of encoding curvature information, not by using Hessians, but by weighting the current
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Figure 18.3: Conjugate gradient method applied to f . Convergence is observed in 24 steps using
exact line search and 28 using Armijo’s rule (ϵ = 10−6)

direction (given by the gradient) −∇f(xk+1) and the previous direction αkdk, which naturally
compensates for the curvature encoded in the original matrix H (which is the Hessian of the
quadratic approximation).

18.1.2 Quasi Newton: BFGS method

Quasi-Newton methods is a term referring to methods that use approximations for the inverse
of the Hessian of f at x, H−1(x), that do not explicitly require second-order information (i.e.,
Hessians) neither expensive inversion operations.

In quasi-Newton methods, we consider the search direction dk = −Dk∇f(xk), where Dk acts
as the approximation for the inverse Hessian H−1(x). To compute Dk, we use local curvature
information, in the attempt to approximate second-order derivatives. For that, let us define the
terms

pk = λkdk = xk+1 − xk
qk = ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = Hpk.

Starting from an initial guessD0, quasi-Newton methods progress by successively updatingDk+1 =
Dk+Ck, with Ck being such that it only uses the information in pk and qk and that, after n updates,
Dn converges to H−1.

For that to be the case, we require that pj , j = 1, . . . , k are eigenvectors of Dk+1H with unit
eigenvalue, that is

Dk+1Hpj = pj , for j = 1, . . . , k. (18.3)

This condition guarantees that, at the last iteration, Dn = H−1. To see that, first, notice the
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following from (18.3).

Dk+1Hpj = pj , j = 1, . . . , k

Dk+1qj = pj , j = 1, . . . , k

Dkqj + Ckqj = pj j = 1, . . . , k

pj = DkHpj + Ckqj = pj + Ckqj , j = 1, . . . , k − 1,

which implies that Ckqj = 0 for j = 1, . . . , k − 1.

Now, for j = k, we require that

Dk+1qk = pk

Dkqk + Ckqk = pk

(Dk + Ck)qk = pk

This last condition allows, after n iterations, to recover

Dn = [p0, . . . , pn−1][q0, . . . , qn−1]
−1 = H(xn) (18.4)

Condition (18.4) is called the secant condition as a reference to the approximation to the second-
order derivative. Another way of understanding the role this condition has is by noticing the
following.

Dk+1qk = pk

Dk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk
∇f(xk+1) = ∇f(xk) +D−1

k+1(xk+1 − xk), (18.5)

where D−1
k+1 can be seen as an approximation to the Hessian H, just as Dk+1 is an approximation

to H−1. Now, consider the second-order approximation of f at xk

q(x) = f(xk) +∇f(xk)⊤(x− xk) +
1

2
(x− xk)⊤H(xk)(x− xk).

We can now notice the resemblance the condition (18.5) holds with

∇q(x) = ∇f(xk) +H(xk)
⊤(x− xk) = 0.

In other words, at each iteration, the updates are made such that the optimality conditions in
terms of the quadratic expansion remains valid.

The Davidon-Fletcher-Powell (DFP) is one classical quasi-Newton method available. It employs
updates of the form

Dk+1 = Dk + CDFP = Dk +
pkp

⊤
k

p⊤k qk
− Dkqkq

⊤
k Dk

q⊤k Dkqk

We can verify that CDFP satisfies conditions (18.3) and (18.4). For that, notice that

(1) CDFP qj = CDFPHpj

=
pkp

⊤
k Hpj

p⊤
k qk

− Dkqkp
⊤
k HDkHpj

q⊤k Dkqk
= 0, for j = 1, . . . , k − 1;
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(2) CDFP qk=
pkp

⊤
k qk

p⊤
k qk

− Dkqkq
⊤
k Dkqk

q⊤k Dkqk
= pk −Dkqk.

The main difference between available quasi-Newton methods is the nature of the matrix C em-
ployed in the updates. Over the years, several ideas emerged in terms of generating updates
that satisfied the above properties. The most widely used quasi-Newton method is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS), which has been widely shown to have remarkable practical
performance. BFGS is part of the Broyden family of updates, given by

CB = CDFP + ϕ
τjvkv

⊤
k

p⊤k qk
,

where vk = pk −
(

1
τk

)
Dkqk, τk =

q⊤j Dkqk

p⊤
k qk

, and ϕ ∈ (0, 1). The extra term in the Broyden

family of updates is designed to help with mitigating numerical difficulties from near-singular
approximations.

It can be shown that all updates from the Broyden family also satisfy the quasi-Newton conditions
(18.3) and (18.4). The BFGS update is obtained for ϕ = 1, which renders

CBFGS
k =

pkp
⊤
k

p⊤k qk

(
1 +

q⊤k Dkqk
p⊤k qk

)
− Dkqkp

⊤
k + pkq

⊤
k Dk

p⊤k qk
.

The BFGS method is often presented explicitly approximating the Hessian H instead of its inverse,
which is useful when using specialised linear algebra packages that rely on the “backslash” operator
to solve linear systems of equations. Let Bk be the current approximation of H. Then Dk+1 =

B−1
k+1 = (Bk + C

BFGS

k )−1, with

C
BFGS

k =
qkq

⊤
k

q⊤k pk
− Bkpkp

⊤
k Bk

p⊤k Bkpk
.

The update for the inverse HessianH−1 can then be obtained using the Sherman-Morrison formula.

Figure 18.4 illustrates the behaviour of the BFGS method when applied to solve

f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using both exact and inexact line searches. Notice how the combination of imprecisions both in the
calculation of H−1 and in the line search turns the search noisy. This combination (BFGS com-
bined with Armijo rule) is, however, widely used in efficient implementations of several nonlinear
optimisation methods.

A variant of BFGS, called the limited memory BFGS (l-BFGS) utilises efficient implementations
that do not require storing the whole approximation for the Hessian, but only a few most recent
pk and qk vectors.

18.2 Complexity, convergence and conditioning

Several aspects must be considered when analysing the performance of algorithms under a given
setting and, in each, a multitude of theoretical results that can be used to understand, even if to
some extent, the performance of a given optimisation method.
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Figure 18.4: BFGS method applied to f . Convergence is observed in 11 steps using exact line
search and 36 using Armijo’s rule (ϵ = 10−6)

We focus on three key properties that one should be aware when employing the methods we have
seen to solve optimisation problems. The first two, complexity and convergence refer to the algo-
rithm itself, but often involve considerations related to the function being optimised. Conditioning,
on the other hand, is a characteristic exclusively related to the problem at hand. Knowing how the
“three C’s” can influence the performance of an optimisation problem is central in making good
choices in terms of which optimisation method to employ.

18.2.1 Complexity

Algorithm complexity analysis is a discipline from computer science that focus on deriving worst-
case guarantees in terms of the number of computational steps required for an algorithm to con-
verge, given an input of known size. For that, we use the following definition to identify efficient,
generally referred to as polynomial, algorithms.

Definition 18.3 (Polynomial algorithms). Given a problem P , a problem instance X ∈ P with
length L(X) in binary representation, and an algorithm A that solves X, let fA(X) be the number of
elementary calculations required to run A on X. Then, the running time of A on X is proportional
to

f∗A(n) = sup
X
{fA(X) : L(X) = n} .

Algorithm A is polynomial for a problem P if f∗A(n) = O(np) for some integer p.

Notice that this sort of analysis only render bounds on the worst-case performance. Though it can
be informative under a general setting, there are several well known examples in that experimental
practice does not correlate with the complexity analysis. One famous example is the simplex
method for linear optimisation problems, which despite not being a polynomial algorithm, presents
widely-demonstrated reliable (polynomial-like) performance.
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18.2.2 Convergence

In the context of optimisation, local analysis is typically more informative regarding to the be-
haviour of optimisation methods. This analysis tend to disregard initial steps further from the
initial points and concentrate on the behaviour of the sequence {xk} to a unique point x.

The convergence is analysed by means of rates of convergence associated with error functions
e : Rn → R such that e(x) ≥ 0. Typical choices for e include:

• e(x) = ||x− x||;

• e(x) = |f(x)− f(x)|.

The sequence {e(xk)} is then compared to the geometric progression βk, with k = 1, 2, . . . , and
β ∈ (0, 1). We say that a method presents linear convergence if exists q > 0 and β ∈ (0, 1) such
that e(x) ≤ qβk for all k. An alternative way of posing this result is stating that

lim
k→∞

sup
e(xk+1)

e(xk)
≤ β.

We say that an optimisation method converges superlinearly if the rate of convergence tends to

zero. That is, if exists β ∈ (0, 1), q > 0 and p > 1 such that e(xk) ≤ qβpk

for all k. For k = 2, we
say that the method presents quadratic convergence. Any p-order convergence is obtained if

lim
k→∞

sup
e(xk+1)

e(xk)p
<∞, which is true if lim

k→∞
sup

e(xk+1)

e(xk)
= 0.

Linear convergence is the most typical convergence rate for nonlinear optimisation methods, which
is satisfactory if β is not too close to one. Certain methods are capable of achieving superlinear
convergence for certain problems, being Newton’s method an important example.

In light of what we discussed, let us analyse the convergence rate of some of the methods earlier
discussed. We start by posing the convergence of gradient methods.

Theorem 18.4 (Convergence of the gradient method). Let f(x) = 1
2x

⊤Hx where H is a positive
definite symmetric matrix. Suppose f(x) is minimised with the gradient method using an exact
line search. Let λ = mini=1,...,n λi and λ = maxi=1,...,n λi, where λi are eigenvalues of H. Then,
for all k,

f(xk+1)

f(xk)
≤
(
λ− λ
λ+ λ

)2

Theorem 18.4 implies that, under certain assumptions, the gradient methods present linear con-
vergence. Moreover, this result shows that the convergence rate is dependent on the scaling of the
function, since it depends on the ratio of eigenvalues of H, which in turn can be modified by scaling
f . This results exposes an important shortcoming that gradient methods present: the dependence
on the conditioning of the problem, which we will discuss shortly. Moreover, this result can be
extended to incorporate functions other than quadratic and also inexact line searches.

The convergence of Newton’s method is also of interest since, under specific circumstances, it
presents a quadratic convergence rate. Theorem 18.5 summarises these conditions.

Theorem 18.5 (Convergence of Newton’s method - general case). Let g : Rn → Rn be differen-
tiable, x such that g(x) = 0, and let {e(xk)} = {||xk − x||}. Moreover, let Nδ(x) = {x : ||x− x|| ≤ δ}
for some δ > 0. Then
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Figure 18.5: Convergence comparison for the four methods

1. There exists δ > 0 such that if x0 ∈ Nδ(x), the sequence {xk} with xk+1 = xk−(∇g(xk)⊤)−1g(xk)
belongs to Nδ(x) and converges to x, while {e(xk)} converges superlinearly.

2. If for some L > 0, M > 0, and for all x, y ∈ Nδ(x), λ ∈ (0, δ]

||∇g(x)−∇g(y)|| ≤ L||x− y|| and ||(∇g(xk)⊤)−1|| ≤M,

then, if x0 ∈ Nδ(x), we have for k = 0, 1, . . .

||xk+1 − x|| ≤
LM

2
||xk − x||2.

If LMδ
2 < 1 and x0 ∈ Nδ(x), {e(xk)} converges quadratically.

Notice that the convergence of the method is analysed in two distinct phases. In the first phase,
referred to as ’damped’ phase, superlinear convergence is observed within the neighbourhood Nδ(x)
defined by δ. The second phase is where quadratic convergence is observed and it happens when
δ < 2

LM , which in practice can only be interpreted as small enough, as the constants L (the
Lipschitz constant) and M (a finite bound for the norm of the Hessian) cannot be easily estimated
in practical applications.

However, it is interesting to notice that the convergence result for Newton’s method do not depend
on the scaling of the problem, like the gradient method. This property, called affine invariance is
one of the greatest features that Newton’s method possess.

Figure 18.5 compare the convergence of four methods presented considering f(x) = e(−(x1−3)/2) +
e((4x2+x1)/10) + e((−4x2+x1)/10), employing exact line search and using e(x) = ||xk − x||. Notice
how the quadratic convergence of Newton’s method compare with the linear convergence of the
gradients method. The other two, conjugate gradients and BFGS, present superlinear convergence.

18.2.3 Conditioning

The condition number of a symmetric matrix is given by

κ = ||A||2||A−1||2 =
maxi=1,...,n {λi}
mini=1,...,n {λi}

=
λ

λ
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The condition number κ is an important measure in optimisation, since it can be used to predict
how badly scaled a problem might be. Large κ values mean that numerical errors will be amplified
after repeated iterations, in particular matrix inversions.

Roughly speaking, having κ ≥ 10k means that at each iteration, k digits of accuracy are lost. As
general rule, one would prefer smaller κ numbers, but good values are entirely problem dependent.

One way of understanding the role that the conditioning number κ has is to think the role that
the eigenvalues of the Hessian have in the shape of the level curves of quadratic approximations of
a general function f : Rn → R. First, let us consider the Hessian H(x) at a given point x ∈ Rn is
the identity matrix I, for which all eigenvalues are 1 and eigenvectors are ei, i = 1, . . . , n, where
ei is the vector with component 1 in the position i and zero everywhere else. This means that in
the direction of the n-eigenvectors, the ellipsoid formed by the level curves (specifically, the lower
level sets) of f stretch by the same magnitude and, therefore, the level curves of the quadratic
approximation are in fact a circle. Now, suppose that for one of the dimensions i of the matrix
H(x), we have one of the eigenvalues greater than 1. What we would see is that the level curves
of the quadratic approximation will be more stretched in that dimension i than in the others.
The reason for that is because the Hessian plays a role akin to that of a characteristic matrix in
an ellipsoid (specifically due to the second order term 1

2 (x− xk)⊤H(xk)(x− xk) in the quadratic
approximation).

Thus, larger κ will mean that the ratio between the eigenvalues is larger, which in turn implies that
there is eccentricity in the lower level sets (i.e., the lower level sets are far wider in one direction
than in others), which ultimately implies that first-order methods struggle since often the gradients
often point to directions that only show descent for small step sizes.
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Figure 18.6: The gradient method with exact line search for different κ.
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Figure 18.6 illustrates the effect of different condition numbers on the performance of the gradient
method. As can be seen, the method require more iterations for higher conditioning numbers, in
accordance to the convergence result presented in Theorem 18.4.
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Chapter 19

Constrained optimality conditions

19.1 Optimality for constrained problems

We now investigate how to derive optimality conditions for the problem

(P ) : min. {f(x) : x ∈ S} .

In particular, we are interested in understanding the role that the feasibility set S has on the
optimality conditions of constrained optimisation problems in the form of P . Let us first define
two geometric elements that we will use to derive the optimality conditions for P .

Definition 19.1 (cone of feasible directions). Let S ⊆ Rn be a nonempty set, and let x ∈ clo(S).
The cone of feasible directions D at x ∈ S is given by

D = {d : d ̸= 0, and x+ λd ∈ S for all λ ∈ (0, δ) for some δ > 0} .

Definition 19.2 (cone of descent directions). Let S ⊆ Rn be a nonempty set, f : Rn → R, and
x ∈ clo(S). The cone of improving (i.e., descent) directions F at x ∈ S is

F = {d : f(x+ λd) < f(x) for all λ ∈ (0, δ) for some δ > 0} .

These cones are geometrical descriptions of the regions that, from a given point x, one can obtain
feasible (D) and improving (F ) solutions. This is useful in that it allows to express the optimality
conditions for x as observing that F ∩D = ∅ holds. In other words, x is optimal if there exists no
feasible direction that can provide improvement in the objective function value.

Although having a geometrical representation of such sets can be useful in solidifying the conditions
for which a feasible solution is also optimal, we need to derive an algebraic representation of such
sets that can be used in computations. To reach that objective, let us start by defining an algebraic
representation for F . For that, let us assume that f : S ⊂ Rn → R is differentiable. Recall that d
is a descent direction at x if ∇f(x)⊤d < 0. Thus, we can define the set F0

F0 =
{
d : ∇f(x)⊤d < 0

}

as an algebraic representation for F . Notice that F0 is an open half-space formed by the hyperplane
with normal ∇f(x). Figure 19.1 illustrates the condition F0 ∩ D = ∅. Theorem 19.3 establishes
that the condition F0 ∩D = ∅ is necessary for optimality in constrained optimisation problems.

Theorem 19.3 (geometric necessary condition). Let S ⊆ Rn be a nonempty set, and let f : S → R
be differentiable at x ∈ S. If x is a local optimal solution to

(P ) : min. {f(x) : x ∈ S} ,
then F0 ∩D = ∅, where F0 =

{
d : ∇f(x)⊤d < 0

}
and D is the cone of feasible directions.
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S

D

F0

x∇f(x)

Figure 19.1: Illustration of the cones F0 and D for the optimal point x. Notice that D is an open
set.

The proof for this theorem consists of using the separation theorem to show that F0 ∩ D = ∅
implies that the first-order optimality condition ∇f(x)⊤d ≥ 0 holds.

As discussed earlier (in Lecture 4), in the presence of convex, this conditions becomes sufficient
for optimality. Moreover, if f is strictly convex, then F = F0. If f is linear, it might be worth
considering F ′

0 =
{
d ̸= 0 : ∇f(x)⊤d ≤ 0

}
to allow for considering orthogonal directions.

19.1.1 Inequality constrained problems

In mathematical programming applications, the feasibility set S is typically expressed by a set of
inequalities. Let us redefine P as

(P ) : min. f(x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

where gi : Rn → R, are differentiable functions for i = 1, . . . ,m and X ⊂ R is an nonempty open
set. The differentiability of gi, i = 1, . . . ,m, allows for the definition of a proxy for D using the
gradients of the binding constraints i ∈ I = {i : gi(x) = 0} at x. This set, denoted by G0, is defined
as

G0 =
{
d : ∇gi(x)⊤d < 0, i ∈ I

}
.

The use of G0 is a convenient algebraic representation, since it can be shown that G0 ⊆ D, which
is stated in Lemma 19.4. As F0 ∩D = ∅ must hold for a local optimal solution x ∈ S, it follows
that F0 ∩G0 = ∅ must also hold.

Lemma 19.4. Let S = {x ∈ X : gi(x) ≤ 0 for all i = 1, . . . ,m}, where X ⊂ Rn is a nonempty
open set and gi : Rn → R a differentiable function for all i = 1, . . . ,m. For a feasible point x ∈ S,
let I = {i : gi(x) = 0} be the index set of the binding (or active) constraints. Let

G0 =
{
d : ∇gi(x)⊤d < 0, i ∈ I

}
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Then G0 ⊆ D, where D is the cone of feasible directions.

In settings in which gi is affine for some i ∈ I, it might be worth considering
G′

0 =
{
d ̸= 0 : ∇gi(x)⊤d ≤ 0, i ∈ I

}
so that orthogonal feasible directions can also be represented.

Notice that in this case D ⊆ G′
0.

19.2 Fritz-John conditions

The Fritz-John conditions are the algebraic conditions that must be met for F0 ∩ G0 = ∅ to
hold. These algebraic conditions are convenient as they only involve the gradients of the binding
constraints and they can be verified computationally.

Theorem 19.5 (Fritz-John necessary conditions). Let X ⊆ Rn be a nonempty open set, and let
f : Rn → R and gi : Rn → R be differentiable for all i = 1, . . . ,m. Additionally, let x be feasible
and I = {i : gi(x) = 0}. If x solves P locally, there exist scalars ui, i ∈ {0} ∪ I, such that

u0∇f(x) +
m∑

i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0, i = 0, . . . ,m

u = (u0, . . . , um) ̸= 0

Proof. Since x solves P locally, Theorem 19.3 guarantees that there is no d such that ∇f(x)⊤d < 0
and ∇gi(x)⊤d < 0 for each i ∈ I. Let A be the matrix whose rows are ∇f(x)⊤ and ∇gi(x)⊤ for
i ∈ I.
Using Farkas’ theorem, we can show that if Ad < 0 is inconsistent, then there exists nonzero p ≥ 0
such that A⊤p = 0. Letting p = (u0, ui1 , . . . , ui|I|) for I =

{
i1, . . . , i|I|

}
and making ui = 0 for

i ̸= I, the result follows.

The proof considers that, if x is optimal, then f(x)⊤d ≥ 0 holds and a matrix A formed by

A =




∇f(x)
∇gi1(x)

...

∇gi|I|(x)




with I =
{
i1, . . . , i|I|

}
, will violate Ad < 0. This is used with a variant of Farkas’ theorem (known

as the Gordan’s theorem) to show that the alternative system A⊤p = 0, with p ≥ 0 holds, which,
by setting p = [u0, ui1 , . . . , ui|I|] and enforcing that the remainder of the gradients ∇gi(x), for
i /∈ I, are removed by setting ui = 0, which leads precisely to the Fritz-John conditions.

The multipliers ui, for i = 0, . . . ,m, are named Lagrangian multipliers due to the connection with
Lagrangian duality, as we will see later. Also, notice that for nonbinding constraints (gi(x) < 0 for
i /∈ I), ui must be zero to form the Fritz-John conditions. This condition is named complementary
slackness.

The Fritz-John conditions are unfortunately too weak, which is a problematic issue in some rather
common settings. A point x satisfies the Fritz-John conditions if and only if F0 ∩ G0 = ∅, which
is trivially satisfied when G0 = ∅.
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For example, the Fritz-John conditions are trivially satisfied for points where some of the gradient
vanishes (i.e., ∇f(x) = 0 or ∇gi(x) = 0 for some i = 1, . . . ,m). Sets with no relative interior in
the immediate vicinity of x also satisfy Fritz-John conditions.

An interesting case is for problems with equality constraints, as illustrated in Figure 19.2. In
general, if the additional regularity condition that the gradients ∇gi(x) are linearly independent
does not hold, x trivially satisfies the Fritz-John conditions.

x1

x2

∇f(x)

∇f(x)

∇g1(x)

∇g2(x)

∇g2(x)

∇g3(x)

∇g3(x)

g1(x) ≤ 0

g3(x) ≤ 0g2(x) ≤ 0

Figure 19.2: All points in the blue segment satisfy FJ conditions, including the minimum x.

19.3 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions can be understood as the Frizt-John conditions with
an extra requirement of regularity for x ∈ S. This regularity requirement is called constraint
qualification and, in a general sense, are meant to prevent the trivial case G0 = ∅, making thus
the optimality conditions stronger (i.e., more stringent).

This is achieved by making u0 = 1 in Theorem 19.5, which ultimately implies that the gradients
∇gi(x) for i ∈ I must be linearly independent. This condition is called linearly independent
constraint qualification (LICQ) and is one of several known constraints qualifications that can be
used to guarantee regularity of x ∈ S.
Theorem 19.6 establishes the KKT conditions as necessary for local optimality of x assuming that
LICQ holds. For notational simplicity, let us assume for now that

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X} .

Theorem 19.6 (Karush-Kuhn-Tucker necessary conditions). Let X ⊆ Rn be a nonempty open
set, and let f : Rn → R and gi : Rn → R be differentiable for all i = 1, . . . ,m. Additionally, for a
feasible x, let I = {i : gi(x) = 0} and suppose that ∇gi(x) are linearly independent for all i ∈ I. If
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x solves P locally, there exist scalars ui for i ∈ I such that

∇f(x) +
m∑

i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m

Proof. By Theorem 19.5, there exists nonzero (ûi) for i ∈ {0} ∪ I such that

û0∇f(x) +
m∑

i=1

ûi∇gi(x) = 0

ûi ≥ 0, i = 0, . . . ,m

Note that û0 > 0, as the linear independence of∇gi(x) for all i ∈ I implies that
∑m

i=1 ûi∇gi(x) ̸= 0.
Now, let ui = ûi/u0 for each i ∈ I and ui = 0 for all i ̸∈ I.

The proof builds upon the Fritz-John conditions, which under the assumption that the gradients
of the active constraints ∇gi(x) for i ∈ I are independent, the multipliers ûi can be rescaled so
that u0 = 1.

The general conditions including both inequality and equality constraints are posed as follows.
Notice that the Lagrange multipliers vi associated with the equality constraints h(x) = 0 for i =
1, . . . , l are irrestricted in sign and the complementary slackness condition is not explicitly stated,
since it holds redundantly. These can be obtained by replacing equality constraints h(x) = 0 with
two equivalent inequalities h−(x) ≤ 0 and −h+(x) ≤ 0 and writing the conditions in Theorem 19.6.
Also, notice that, in the absence of constraints, the KKT conditions reduce to the unconstrained
first-order condition ∇f(x) = 0.

∇f(x) +
m∑

i=1

ui∇gi(x) +
l∑

i=1

vi∇hi(x) = 0 (dual feasibility 1)

uigi(x) = 0, i = 1, . . . ,m (complementary slackness)

x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m (primal feasibility)

hi(x) = 0, i = 1, . . . , l

ui ≥ 0, i = 1, . . . ,m (dual feasibility 2)

The KKT conditions can be interpreted geometrically as follows. Consider the cone spanned by
the active constraints at x, defined as N(x) =

{∑
i∈I ui∇gi(x) : ui ≥ 0

}
. A solution x will then

satisfy the KKT conditions if −∇f(x) ∈ N(x), which is equivalent to −∇f(x) = ∑m
i=1 ui∇gi(x).

Figure 19.3 illustrates this condition.

19.4 Constraint qualification

Constraint qualification is a technical condition that needs to be assessed in the context of nonlinear
optimisation problems. As we rely on an algebraic description of the set of directions G0 that serves
as proxy for D, it is important to be sure that the former is indeed a reliable description of the
latter.
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Figure 19.3: Graphical illustration of the KKT conditions at the optimal point x

In specific, constraint qualification can be seen as a certification that the geometry of the feasible
region and gradient information obtained from the constraints that forms it are related at an
optimal solution. Remind that gradients can only provide a first-order approximation of the
feasible region, which might lead to mismatches. This is typically the case when the feasible region
has cusps, or a single feasible points.

Constraint qualification can be seen as certificates for proper relationships between the set of
feasible directions

G′
0 =

{
d ̸= 0 : ∇gi(x)⊤d ≤ 0, i ∈ I

}

and the cone of tangents (or tangent cone)

T =

{
d : d = lim

k→∞
λk(xk − x), lim

k→∞
xk = x, xk ∈ S, λk > 0,∀k

}
(19.1)

with S = {gi(x) ≤ 0, i = 1, . . . ,m;h(x) = 0, i = 1, . . . , l;x ∈ X}.
The cone of tangents is a cone representing all directions in which the feasible region allow for an
arbitrarily small movement from the point x while retaining feasibility. As the name suggests, it
is normally formed by the lines that are tangent to S at x. Note that, however, if the point is in
the interior of S ⊆ Rn, then T = Rn.

One way of interpreting the cone of tangents as defined in (19.1) is the following: consider a
sequence of feasible points x ∈ S in any trajectory you like, but in a way that the sequence
converges to x. Then, take the last (in a limit sense, since k →∞) xk and consider this direction
from which xk came onto x. The collection of all these directions from all possible trajectories is
what forms the cone of tangents.

Constraint qualification holds when T = G′
0 holds for x, a condition named Abadie’s constraint
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T = G′
0

S

x

∇g1(x)

∇g2(x)

(a)

T = G′
0

S

x

∇g1(x)

(b)

∅ = T ̸= G′
0 x

∇g1(x)

∇g2(x)

(c)

Figure 19.4: CQ holds for 19.4a and 19.4b, since the tangent cone T and the cone of feasible
directions G′

0 (denoted by the dashed black lines and grey area) match; for 19.4c, they do not
match, as T = ∅

qualification. In the presence of equality constraints, the condition becomes T = G′
0 ∩H0, with

H0 =
{
d : ∇hi(x)⊤d = 0, i = 1, . . . , l

}
.

Figure 19.4 illustrates the tangent cone T and the cone of feasible directions (G′
0) for cases when

constraint qualification holds (Figures 19.4a and 19.4b) for which case T = G′
0, and a case for

when it does not (Figure 19.4c, where T = ∅ and G′
0 is given by the dashed black line).

The importance of Abadie constraint qualification is that it allows for generalising the KKT con-
ditions by replacing the condition the linear independence of the gradients ∇gi(x) for i ∈ I. This
allows us to state the KKT conditions as presented in Theorem 19.7.

Theorem 19.7 (Karush-Kuhn-Tucker necessary conditions II). Consider the problem

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X} .

Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . ,m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that Abadie CQ
holds at x. If x solves P locally, there exist scalars ui for i ∈ I such that

∇f(x) +
m∑

i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.

Despite being a more general result, Theorem 19.7 is of little use, as Abadie’s constraint quali-
fication cannot be straightforwardly verified in practice. Alternatively, we can rely on verifiable
constraint qualification conditions that imply Abadie’s constraint qualification. Examples include

1. Linear independence (LI)CQ: holds at x if∇gi(x), for i ∈ I, as well as∇hi(x), i = 1, . . . , l
are linearly independent.
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2. Affine CQ: holds for all x ∈ S if gi, for all i = 1, . . . ,m, and hi, for all i = 1, . . . , l, are
affine.

3. Slater’s CQ: holds for all x ∈ S if gi is a convex function for all i = 1, . . . ,m, hi is an affine
function for all i = 1, . . . , l, and there exists x ∈ S such that gi(x) < 0 for all i = 1, . . . ,m.

Slater’s constraint qualification is the most frequently used, in particular in the context of convex
optimisation problems. One important point to notice is the requirement of not having an empty
relative interior, which can be a source of error.

Consider, for example: P =
{
min. x1 : x21 + x2 ≤ 0, x2 ≥ 0

}
. Notice that P is convex and therefore

the KKT system for P is

(
1

0

)
+

(
0 0

1 −1

)(
u1
u2

)
= 0;u1, u2 ≥ 0,

which has no solution. Thus, the KKT conditions are not necessary for the global optimality of
(0, 0). This is due to the lack of CQ, since the feasible region is the single point (0, 0) and the fact
that KKT conditions are only sufficient (not necessary), in the presence of convexity.

Corollary 19.8 summarises the setting in which one should expect the KKT conditions to be
necessary an sufficient conditions for global optimality, i.e., convex optimisation.

Corollary 19.8 (Necessary and sufficient KKT conditions). Suppose that Slater’s CQ holds. Then,
if f is convex, the conditions of Theorem 19.7 are necessary and sufficient for x to be a global
optimal solution.
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Lagrangian duality

20.1 The concept of relaxation

The idea of using relaxations is central in several constrained optimisation methods. In a general
sense, it consists of techniques that remove constraints from the problem to allow for a version,
i.e., a relaxation, that is simpler to solve and/or can provide information to be used for solving the
original problem.

A classical example of the employment of relaxations for solving constrained problems is the branch-
and-bound method that uses linear (continuous) relaxations of integer problems to guide the search
for optimal solutions that are also integers. However, there are several other examples of settings
in which relaxations are purposely derived to lead to problems with a convenient structure that
can be exploited.

Let f : Rn → R and S ⊆ Rn. Consider the following problem:

(P ) : min. {f(x) : x ∈ S}
Definition 20.1 provides the conditions for PR to be a relaxation of P , where

(PR) : min. {fR(x) : x ∈ SR}
with fR : Rn → R, SR ⊆ Rn.

Definition 20.1 (Relaxation). PR is a relaxation of P if and only if:

1. fR(x) ≤ f(x), for all x ∈ S;
2. S ⊆ SR.

In specific, PR is said to be a relaxation for P if fR(x) bounds f(x) from below (in a minimisation
setting) for all x ∈ S and the enlarged feasible region SR contains S.

The motivation for using relaxations arises from the possibility of finding a solution to the the
original problem P by solving PR. Clearly, such a strategy would only make sense if PR possess
some attractive property or feature that we can use in our favour to, e.g., improve solution times
or create separability that can be further exploited using parallelised computation (which we will
discuss in more details in the upcoming lectures). Theorem 20.2 presents the technical result that
allows for using relaxations for solving P .

Theorem 20.2 (Relaxation theorem). Let us define

(P ) : min. {f(x) : x ∈ S} and (PR) : min. {fR(x) : x ∈ SR}
If PR is a relaxation of P , then the following hold:

285
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1. if PR is infeasible, so is P ;

2. if xR is an optimal solution to PR such that xR ∈ S and fR(xR) = f(xR), then xR is optimal
to P as well.

Proof. Result (1) follows since S ⊆ SR. To show (2), notice that f(xR) = fR(xR) ≤ fR(x) ≤ f(x)
for all x ∈ S.

The first part of the proof is a consequence of S ⊂ SR, meaning that if x /∈ S, then x /∈ SR.
The second part combines the optimality of xR (first inequality) and the definition of a relaxation
(second inequality) to derive the optimality condition of xR for P , which is f(xR) ≤ f(x) for all
x ∈ S.

20.2 Lagrangian dual problems

Lagrangian duality is the body of theory supporting the use of Lagrangian relaxations to solve
constrained optimisation problems. In what follows, we refer to the relaxation obtained using
Lagrangian duality as the (Lagrangian) dual problem. Consequently, we refer to original problem
as the primal problem.

Let f : Rn → R, g : Rn → Rm, h : Rn → Rl, and assume that X ⊆ Rn is an open set. Then,
consider P defined as

(P ) : min. f(x)

s.t.: g(x) ≤ 0

h(x) = 0

x ∈ X.

For a given set of dual variables (u, v) ∈ Rm+l with u ≥ 0, the Lagrangian relaxation (or Lagrangian
dual function) of P is

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v)

where
ϕ(x, u, v) := f(x) + u⊤g(x) + v⊤h(x)

is the Lagrangian function.

Notice that the Lagrangian dual function θ(u, v) has a built-in optimisation problem in x, meaning
that evaluating θ(u, v) still requires solving an optimisation problem, which amounts to finding the
minimiser x for ϕ(x, u, v), given (u, v).

20.2.1 Weak and strong duality

Weak and strong duality are, to some extent, consequences of Theorem 20.2 and the fact that the
Lagrangian relaxation is indeed a relaxation of P . We start with the equivalent to Definition 20.1,
which is referred to as weak duality.

Theorem 20.3 (Weak Lagrangian duality). Let x be a feasible solution to P , and let (u, v) be
such that u ≥ 0, i.e., feasible for D. Then θ(u, v) ≤ f(x).
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Proof. From feasibility, u ≥ 0, g(x) ≤ 0 and h(x) = 0. Thus, we have that

θ(u, v) = inf
x∈X

{
f(x) + u⊤g(x) + v⊤h(x)

}
≤ f(x) + u⊤g(x) + v⊤h(x) ≤ f(x).

which completes the proof.

The proof uses the fact that the infimal of the Lagrangian function ϕ(x, u, v), and in fact any
value for ϕ(x, u, v) for all primal feasible x and dual feasible u ≥ 0 (a condition for the Lagrangian
relaxation to be indeed a relaxation) are bounds to f(x). This arises from observing that g(x) ≤ 0
for a feasible x. The Lagrangian dual problem is the problem used to obtain the best possible
relaxation bound θ(u, v) for f(x), in light of Theorem 20.3. This can be achieved by optimising
θ(u, v) in the space of the dual variables (u, v), that is

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v).

The use of Lagrangian dual problems is an alternative for dealing with constrained optimisation
problems, as they allow to convert the constrained primal into a (typically) unconstrained dual
that is potentially easier to handle, or present exploitable properties that can benefit specialised
algorithms, such as separability.

Employing Lagrangian relaxations to solve optimisation problems is possible due to the following
important results, which are posed as corollaries of Theorem 20.3.

Corollary 20.4 (Weak Lagrangian duality II).

sup
u,v
{θ(u, v) : u ≥ 0} ≤ inf

x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} .

Proof. We have θ(u, v) ≤ f(x) for any feasible x and (u, v), thus implying supu,v {θ(u, v) : u ≥ 0} ≤
infx {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}

Corollary 20.5 (Strong Lagrangian duality). If f(x) = θ(u, v), u ≥ 0, and x ∈ {x ∈ X : g(x) ≤ 0, h(x) = 0},
then x and (u, v) are optimal solutions to P and D, respectively.

Proof. Use part (2) of Theorem 20.2 with D being a Lagrangian relaxation.

Notice that Corollary 20.5 implies that if the optimal solution value of the primal and the dual
problems match, then the respective primal and dual solutions are optimal. However, to use
Lagrangian relaxations to solve constrained optimisation problems, we need the opposite clause to
also hold, which is called strong duality and, unfortunately, does not always hold.

Geometric interpretation of Lagrangian duality

To investigate the cases in which strong duality can hold, let us focus on a graphical interpretation
of Lagrangian dual problems. For that, let us first define some auxiliary elements.

For the sake of simplicity, consider (P ) : min. {f(x) : g(x) ≤ 0, x ∈ X} with f : Rn → R, a single
constraint g : Rn → R and X ⊆ Rn an open set.

Let us define the mapping G = {(y, z) : y = g(x), z = f(x), x ∈ X}, which consists of a mapping
of points x ∈ X to the (y, z)-space obtained using (f(x), g(x)). In this setting, solving P means
finding a point with minimum ordinate z for which y ≤ 0. Figure 20.1 illustrate this setting.
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x ∈ X

(g(x), f(x))

G

(y, z) = (g(x), f(x))

y = g(x)

z = f(x)

Figure 20.1: Illustration of the mapping G, in which one can see that solving P amounts to finding
the lowermost point on the vertical axis (the ordinate) that is still contained within G.

z = f(x)

y = g(x)

G

z + uy = α

z + uy = α

θ(u)

(y, z) = (g(x), f(x) = θ(u)

Figure 20.2: Solving the Lagrangian dual problem is the same as finding the coefficient u such that
z = α − uy is a supporting hyperplane of G with the uppermost intercept α. Notice that, for u,
the hyperplane supports G at the same point that solves P .

Now, assume that u ≥ 0 is given. The Lagrangian function is given by

θ(u) = min
x
{f(x) + ug(x) : x ∈ X} ,

which can be represented by a hyperplane of the form z = α − uy. Therefore, optimising the
Lagrangian dual problem (D) : supu {θ(u)} consists of finding the slope −u that would achieve
the maximum intercept on the ordinate z while being a supporting hyperplane for G. Figure 20.2
illustrates this effect. Notice that, in this case, the optimal values of the primal and dual problems
coincide. The perturbation function v(y) = min. {f(x) : g(x) ≤ y, x ∈ X} is an analytical tool
that plays an important role in understanding when strong duality holds, which, in essence, is the
underlying reason why the optimal values of the primal and dual problems coincide.

Specifically, notice that v(y) is the greatest monotone nonincreasing lower envelope of G. Moreover,
the reason why f(x) = θ(u) is related to the convexity of v(y), which implies that

v(y) ≥ v(0)− uy for all y ∈ R.

Notice that this is a consequence of Theorem 12 from Lecture 2 (that states that convex sets have
supporting hyperplanes for all points on their boundary) and Theorem 5 in Lecture 3 (that convex
functions have convex epigraphs)
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A duality gap exists when the perturbation function v(y) does not have supporting hyperplanes
within all its domain, which is otherwise the case when v(y) is convex. Figure 20.3 illustrates a
case in which v(y) is not convex and therefore θ(u) < f(x).

z = f(x)

y = g(x)

G

z + uy = α

θ(u)

(y, z) = (g(x), f(x)

Figure 20.3: An example in which the perturbation function v(y) is not convex. Notice the
consequent mismatch between the intercept of the supporting hyperplane and the lowermost point
on the ordinate still contained in G.

Let us illustrate the above with two numerical examples. First, consider the following problem

(P ) : min. x21 + x22

x1 + x2 ≥ 4

x1, x2 ≥ 0.

The Lagrangian dual function is given by

(D) : θ(u) = inf
{
x21 + x22 + u(−x1 − x2 + 4) : x1, x2 ≥ 0

}

= inf
{
x21 − ux1 : x1 ≥ 0

}
+ inf

{
x22 − ux2 : x2 ≥ 0

}
+ 4u

=

{
−1/2u2 + 4u, if u ≥ 0

−4u, 1 + 4u2 if u < 0.

Figures 20.4a and 20.4b provide a graphical representation of the primal problem P and dual
problem D. As can be seen, both problems have as optimal value f(x1, x2) = θ(u) = 8, with the
optimal solution x = (2, 2) for P and u = 4 for D.

To draw the (g, f) map of X, we proceed as follows. First, notice that

v(y) = min.
{
x21 + x22 : −x1 − x2 + 4 ≥ y

}

which shows that (x1, x2) = (0, 0) if y > 4. For y ≤ 4, v(y) can be equivalently rewritten as

v(y) = min.
{
x21 + x22 : −x1 − x2 + 4 = y

}
.

Let h(x) = −x1 − x2 + 4 and f(x) = x21 + x22. Now, the optimality conditions for x to be an
optimum for v are such that

∇f(x) + u∇h(x) = 0⇒
{
2x1 − u = 0

2x2 − u = 0
⇒ x1 = x2 = u/2.
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Figure 20.4: The primal problem P as a constrained optimisation problem, and the dual problem
D, as an unconstrained optimisation problem. Notice how the Lagrangian dual function is discon-
tinuous, due to the implicit minimisation in x of θ(u) = infx∈X ϕ(x, u).

From the definition of h(x), we see that u = 4 − y, and thus x = ( 4−y
2 , 4−y

2 ), which, substituting
in f(x) gives v(y) = (4 − y)2/2. Note that v(y) ≥ v(0) − uy holds for all y ∈ R, that is, v(y) is
convex. Also, notice that the supporting hyperplane is exactly z = 8− 4y.

Now, let us consider a second example, in which the feasible set is not convex and, therefore, the
mapping G will not be convex either. For that, consider the problem

(P ) : min. − 2x1 + x2

s.t.: x1 + x2 = 3

x1, x2 ∈ X.

where X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)}. The optimal point x = (2, 1). The Lagrangian
dual function is given by

θ(v) = min {(−2x1 + x2) + v(x1 + x2 − 3) : (x1, x2) ∈ X}

=





−4 + 5v, if v ≤ −1
−8 + v, 5 if − 1 ≤ v ≤ 2

−3v,+p1 if v ≥ 2.

Figure 20.6a provides a graphical representation of the problem. Notice that to obtain the La-
grangian dual function one must simply take the lowermost segments of the hyperplanes obtained
when considering each x ∈ X, which leads to a piecewise concave function, as represented in Figure
20.6b.

Similarly to the previous example, we can plot the G mapping, which in this case consists of the
points x ∈ X mapped as (h(x), f(x)), with h(x) = x1 + x2 − 3 and f(x) = −2x1 + x2. Notice
that v(y) in this case is discontinuous, represented by the three lowermost points. Clearly, v(y)
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Figure 20.5: The G mapping for the first example.

does not have a supporting hyperplane at the minimum of P , which illustrates the existence of a
duality gap, as stated by the fact that −3 = f(x) > θ(v) = −6.

Strong duality

From the previous graphical interpretation and related examples, it becomes clear that there is a
strong tie between strong duality and the convexity of P . This is formally described in Theorem
20.6.

Theorem 20.6. Let X ⊆ Rn be a nonempty convex set. Moreover, let f : Rn → R and g : Rn →
Rm be convex functions, and let h : Rn → Rl be an affine function: h(x) = Ax − b. Suppose that
Slater’s constraint qualification holds true. Then

inf
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup

u,v
{θ(u, v) : u ≥ 0} ,

where θ(u, v) = infx∈X

{
f(x) + u⊤g(x) + v⊤h(x)

}
is the Lagrangian function. Furthermore, if

infx {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} is finite and achieved at x, then
supu,v {θ(u, v) : u ≥ 0} is achieved at (u, v) with u ≥ 0 and u⊤g(x) = 0.

The proof for the strong duality theorem follows the following outline:

1. Let γ = infx {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. Suppose that −∞ < γ < ∞, hence finite
(for unbounded problems, f(x) = −∞ implies θ(u, v) = −∞ since θ(u, v) ≤ f(x) from
Theorem 20.3; the right-hand side holds by assumption of the existence of a feasible point
from Slater’s constraint qualification).

2. Formulate the inconsistent system:

f(x)− γ < 0, g(x) ≤ 0, h(x) = 0, x ∈ X.

3. Use the separation theorem (or a variant form of Farkas theorem) to show that (u0, u, v)
with u0 > 0 and u ≥ 0 exists such that, after scaling using u0 one obtains θ(u, v) :=
f(x) + u⊤g(x) + v⊤h(x) ≥ γ, x ∈ X, which requires the assumption of Slater’s constraint
qualification.
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(b) (D) : max. θ(v)

Figure 20.6: The primal problem P as a constrained optimisation problem and the dual problem
D. Notice how the Lagrangian dual function is concave and piecewise linear, despite the nonconvex
nature of P .

4. From weak duality (Theorem 20.3), we have that θ(u, v) ≤ γ, which combined with the
above, yields θ(u, v) = γ.

5. Finally, an optimal x solving the primal problem implies that g(x) ≤ 0, h(x) = 0, x ∈ X,
and f(x) = γ. From 3, we have u⊤g(x) ≥ 0. As g(x) ≤ 0 and u ≥ 0, u⊤g(x) ≥ 0 = 0.

The proof uses a variant of the Farkas theorem that states the existence of a solution for the system
u0(f(x)− γ) + u⊤g(x) ≥ 0, x ∈ X with (u0, u, v) ̸= 0, what can be shown to be the case if Slater’s
constraint qualification holds. This, combined with weak duality stated in Theorem 20.3 yields
strong duality.

20.2.2 Employing Lagrangian duality for solving optimisation problems

Weak duality can be used to derive a stopping criterion for solution methods that can generate both
primal and dual feasible solutions, also known as primal-dual pairs. Such methods are typically
referred to as primal-dual methods, being the primal-dual interior point method (which we will
discuss in details in an upcoming lecture) perhaps the most widely known.

For feasible x and (u, v), one can bound how suboptimal f(x) is, by noticing that

f(x)− f(x) ≤ f(x)− θ(u, v),

which is a consequence of f(x) ≥ θ(u, v) (i.e., weak duality). We say that x is ϵ-optimal, with
ϵ = f(x)− θ(u, v).
In essence, (u, v) is a certificate of (sub-)optimality of x, as (u, v) proves that x is ϵ-optimal.
Moreover, in case strong duality holds, under the conditions of Theorem 6, one can expect ϵ
converge to zero.
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Figure 20.7: The G mapping for the second example. The blue dots represent the perturbtion
function v(y), which is not convex and thus cannot be supported everywhere. Notice the duality
gap represented by the difference between the intercept of z = −6 − 2y and the optimal value of
P at (0,-3).

To see how this the case, observe the following. First, as can be seen in Theorem 20.6, a consequence
of strong duality is that complementarity conditions u⊤g(x) ≥ 0 = 0 hold for an optimal primal-
dual pair (x, (u, v)). Secondly, notice that, by definition, x and (u, v) are primal and dual feasible,
respectively.

The last component missing is to notice that, if x is a minimiser for ϕ(x, u, v) = f(x) + u⊤g(x) +
v⊤h(x), then we must have

∇f(x) +
m∑

i=1

ui∇gi(x) +
l∑

i=1

vi∇hi(x) = 0.

Combining the above, one can see that we have listed all of the KKT optimality conditions,
which under the assumptions of Theorem 20.6 are known to be necessary and sufficient for global
optimality. That is, in this case, any primal dual pair for which the objective function values
match will automatically be a point satisfying the KKT conditions and therefore globally optimal.
This provides an alternative avenue to search for optimal solutions, relying on Lagrangian dual
problems.

20.2.3 Saddle point optimality and KKT conditions*

An alternative perspective for establishing necessary and sufficient conditions for strong duality to
hold involves identifying the existence of saddle points for the Lagrangian dual problem.

Let us first define saddle points in the context of Lagrangian duality. Let

(P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} .
Let us define the Lagrangian function ϕ(x, u, v) = f(x) + u⊤g(x) + v⊤h(x). A solution (x, u, v) is
called a saddle point if x ∈ X, u ≥ 0, and

ϕ(x, u, v) ≤ ϕ(x, u, v) ≤ ϕ(x, u, v)
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for all x ∈ X and (u, v) such that u ≥ 0.

Notice that this definition implies that:

• x minimises ϕ(x, u, v) when (u, v) is fixed at (u, v);

• (u, v) maximises ϕ(x, u, v) when x is fixed at x.

This insight allows for the development of methods that can alternatively solve the Lagrangian
dual problem in the space of primal variables x and dual variables (u, v) in a block-coordinate
descent fashion.

Theorem 20.7 establishes the relationship between the existence of saddle points for Lagrangian
dual problems and zero duality gaps.

Theorem 20.7 (Saddle point optimality and zero duality gap). A solution (x, u, v) with x ∈ X
and u ≥ 0 is a saddle point for the Lagrangian function ϕ(x, u, v) = f(x)+u⊤g(x)+v⊤h(x) if and
only if:

1. ϕ(x, u, v) = min. {ϕ(x, u, v) : x ∈ X}

2. g(x) ≤ 0, h(x) = 0, and

3. u⊤g(x) = 0

Moreover, (x, u, v) is a saddle point if and only if x and (u, v) are optimal solutions for the primal
(P) and dual (D) problems, respectively, with f(x) = θ(u, v).

From Theorem 20.7 it becomes clear that there is a strong connection between the existence of
saddle points and the KKT conditions for optimality. Figure 20.8 illustrates the existence of a
saddle point and the related zero optimality gap.
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Fig. 4.11. Graphical illustration of saddle point (x∗, λ∗, µ∗) of the Lagrangian

Illustrative Example 4.10 (Duality gap). Consider the same problem
as the one considered in the Illustrative Example 4.7,

minimize
x1, x2

−2x1 + x2

subject to

x1 + x2 =
5

2
(x1, x2) ∈ X ,

where X = {(0, 0), (0, 2), (2, 0), (2, 2), (5/4, 5/4)}. Its dual function is given by
the explicit expression

φ(λ) =





−2 +
3λ

2
if λ ≤ −1

−4 − λ

2
if −1 ≤ λ ≤ 2

−5λ

2
if λ ≥ 2 ,

shown in Fig. 4.12. The optimal solution of the dual problem is λ∗ = −1 with
objective function value φ(λ∗) = −7/2.

�(x, u, v)
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✓(u, v)
<latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit>

u, v
<latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit>

x
<latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit>

u, v
<latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit>

f(x) = ✓(u, v)
<latexit sha1_base64="2Qsau2rwN+IFeLYtsaY3KPdQ+2Y=">AAACHHicbVDLSgMxFM34rPU16tJNsAgtSJmpgm6EghuXFewDOkPJpJk2NPMguVMsw3yIG3/FjQtF3LgQ/BvTB1hbDwROzrmH5B4vFlyBZX0bK6tr6xubua389s7u3r55cNhQUSIpq9NIRLLlEcUED1kdOAjWiiUjgSdY0xvcjP3mkEnFo/AeRjFzA9ILuc8pAS11zHO/6ER6YJxPH7ISvsYO9BmQOTnJzn4vw6zUMQtW2ZoALxN7RgpohlrH/HS6EU0CFgIVRKm2bcXgpkQCp4JleSdRLCZ0QHqsrWlIAqbcdLJchk+10sV+JPUJAU/U+URKAqVGgacnAwJ9teiNxf+8dgL+lZvyME6AhXT6kJ8IDBEeN4W7XDIKYqQJoZLrv2LaJ5JQ0H3mdQn24srLpFEp25rfXRSqlVkdOXSMTlAR2egSVdEtqqE6ougRPaNX9GY8GS/Gu/ExHV0xZpkj9AfG1w+cfKJH</latexit><latexit sha1_base64="2Qsau2rwN+IFeLYtsaY3KPdQ+2Y=">AAACHHicbVDLSgMxFM34rPU16tJNsAgtSJmpgm6EghuXFewDOkPJpJk2NPMguVMsw3yIG3/FjQtF3LgQ/BvTB1hbDwROzrmH5B4vFlyBZX0bK6tr6xubua389s7u3r55cNhQUSIpq9NIRLLlEcUED1kdOAjWiiUjgSdY0xvcjP3mkEnFo/AeRjFzA9ILuc8pAS11zHO/6ER6YJxPH7ISvsYO9BmQOTnJzn4vw6zUMQtW2ZoALxN7RgpohlrH/HS6EU0CFgIVRKm2bcXgpkQCp4JleSdRLCZ0QHqsrWlIAqbcdLJchk+10sV+JPUJAU/U+URKAqVGgacnAwJ9teiNxf+8dgL+lZvyME6AhXT6kJ8IDBEeN4W7XDIKYqQJoZLrv2LaJ5JQ0H3mdQn24srLpFEp25rfXRSqlVkdOXSMTlAR2egSVdEtqqE6ougRPaNX9GY8GS/Gu/ExHV0xZpkj9AfG1w+cfKJH</latexit><latexit sha1_base64="2Qsau2rwN+IFeLYtsaY3KPdQ+2Y=">AAACHHicbVDLSgMxFM34rPU16tJNsAgtSJmpgm6EghuXFewDOkPJpJk2NPMguVMsw3yIG3/FjQtF3LgQ/BvTB1hbDwROzrmH5B4vFlyBZX0bK6tr6xubua389s7u3r55cNhQUSIpq9NIRLLlEcUED1kdOAjWiiUjgSdY0xvcjP3mkEnFo/AeRjFzA9ILuc8pAS11zHO/6ER6YJxPH7ISvsYO9BmQOTnJzn4vw6zUMQtW2ZoALxN7RgpohlrH/HS6EU0CFgIVRKm2bcXgpkQCp4JleSdRLCZ0QHqsrWlIAqbcdLJchk+10sV+JPUJAU/U+URKAqVGgacnAwJ9teiNxf+8dgL+lZvyME6AhXT6kJ8IDBEeN4W7XDIKYqQJoZLrv2LaJ5JQ0H3mdQn24srLpFEp25rfXRSqlVkdOXSMTlAR2egSVdEtqqE6ougRPaNX9GY8GS/Gu/ExHV0xZpkj9AfG1w+cfKJH</latexit><latexit sha1_base64="2Qsau2rwN+IFeLYtsaY3KPdQ+2Y=">AAACHHicbVDLSgMxFM34rPU16tJNsAgtSJmpgm6EghuXFewDOkPJpJk2NPMguVMsw3yIG3/FjQtF3LgQ/BvTB1hbDwROzrmH5B4vFlyBZX0bK6tr6xubua389s7u3r55cNhQUSIpq9NIRLLlEcUED1kdOAjWiiUjgSdY0xvcjP3mkEnFo/AeRjFzA9ILuc8pAS11zHO/6ER6YJxPH7ISvsYO9BmQOTnJzn4vw6zUMQtW2ZoALxN7RgpohlrH/HS6EU0CFgIVRKm2bcXgpkQCp4JleSdRLCZ0QHqsrWlIAqbcdLJchk+10sV+JPUJAU/U+URKAqVGgacnAwJ9teiNxf+8dgL+lZvyME6AhXT6kJ8IDBEeN4W7XDIKYqQJoZLrv2LaJ5JQ0H3mdQn24srLpFEp25rfXRSqlVkdOXSMTlAR2egSVdEtqqE6ougRPaNX9GY8GS/Gu/ExHV0xZpkj9AfG1w+cfKJH</latexit>
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Figure 20.8: Illustration of a saddle point for the Lagrangian dual problem

20.3 Properties of Lagrangian functions

Lagrangian duals are a useful framework for devising solution methods for constrained optimisation
problems if solving the dual problem can be done efficiently or exposes some exploitable structure.

One important property that Lagrangian dual functions present is that they are concave piece-
wise linear in the dual multipliers. Moreover, they are continuous and thus have subgradients
everywhere. Notice however that they are typically not differentiable, requiring the employment
of a nonsmooth optimisation method to be appropriately solved. Theorem 20.8 establishes the
concavity of the Lagrangian dual function.

Theorem 20.8 (Concavity of Lagrangian dual functions). Let X ⊆ Rn be a nonempty compact

set, and let f : Rn → R and β : Rn → Rm+l, with w⊤β(x) =
(
u
v

)⊤(g(x)
h(x)

)
be continuous. Then

θ(w) = infx
{
f(x) + w⊤β(x) : x ∈ X

}
is concave in Rm+l

Proof. Since f and β are continuous and X is compact, θ is finite on Rm+l. Let w1, w2 ∈ Rm+l,
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and let λ ∈ (0, 1). We have

θ[λw1 + (1− λ)w2] = inf
x

{
f(x) + [λw1 + (1− λ)w2]

⊤β(x) : x ∈ X
}

= inf
x

{
λ[f(x) + w⊤

1 β(X)] + (1− λ)[f(x) + w⊤
2 β(x)] : x ∈ X

}

≥ λ inf
x

{
f(x) + w⊤

1 β(x) : x ∈ X
}
+ (1− λ) inf

x

{
f(x) + w⊤

2 β(x) : x ∈ X
}

= λθ(w1) + (1− λ)θ(w2).

The proof uses the fact that the Lagrangian function θ(w) is the infimum of affine functions in w,
and therefore concave. An alternative approach to show the concavity of the Lagrangian function
is to show that it has subgradients everywhere. This is established in Theorem 20.9.

Theorem 20.9. Let X ⊂ Rn be a nonempty compact set, and let f : Rn → R and β : Rn → Rm+l,

with w⊤β(x) =
(
u
v

)⊤(g(x)
h(x)

)
be continuous. If x ∈ X(w) =

{
x ∈ X : x = argmin

{
f(x) + w⊤β(x)

}}
,

then β(x) is a subgradient of θ(w).

Proof. Since f and β are continuous and X is compact, X(w) ̸= ∅ for any w ∈ Rm+l. Now, let
w ∈ Rm+l and x ∈ X(w). Then

θ(w) = inf
{
f(x) + w⊤β(x) : x ∈ X

}

≤ f(x) + w⊤β(x)

= f(x) + (w − w)⊤β(x) + w⊤β(x)

= θ(w) + (w − w)⊤β(x).

Theorem 20.9 can be used to derive a simple optimisation method for Lagrangian functions using
subgradient information that is easily available from the term β(w).

20.3.1 The subgradient method

One challenging aspect concerning the solution of Lagrangian dual functions is that very often they
are not differentiable. This requires an adaptation of the gradient method to consider subgradient
information instead.

The challenge with using subgradients (instead of gradients) is that subgradients are not guaran-
teed to be descent directions (as opposed to gradients being the steepest descent direction under
adequate norm). Nevertheless, for suitable step size choices, convergence can be observed. Figure
20.9 illustrates the fact that subgradients are not necessarily descent directions.

Algorithm 23 summarises the subgradient method. Notice that the stopping criterion emulates
the optimality condition 0 ∈ ∂θ(wk), but in practice, one also enforces more heuristically driven
criteria such as maximum number of iterations or a given number of iterations without observable
improvement on the value of θ(w).
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u1

u2

∂θ(wk)
β(xk)

w

Figure 20.9: One possible subgradient β(xk) that is a descent direction for suitable step size.
Notice that within the subdifferential ∂θ(wk) other subgradients that are not descent direction are
available.

Algorithm 18 Subgradient method

1: initialise. tolerance ϵ > 0, initial point w0, iteration count k = 0.
2: while ||β(xk)||2 > ϵ do
3: xk ← argminx

{
θ(wk) = infx

{
f(x) + w⊤

k β(x)
}}

4: LBk = max {LBk, θ(wk)}
5: update λk
6: wk+1 = wk + λkβ(xk).
7: k ← k + 1.
8: end while
9: return LBk = θ(wk).

One critical aspect associated with the subgradient method is the step size update described in
Step 5 of Algorithm 23. Theoretical convergence is guaranteed if Step 5 generates a sequence {λk}
such that

∑∞
k=0 λk → ∞ and limk→∞ λk = 0. However, discrepant performance can be observed

for distinct parametrisation of the method.

The classical step update rule employed for the subgradient method is known as the Polyak rule,
which is given by

λk+1 =
αk(LBk − θ(wk))

||β(xk)||2

with αk ∈ (0, 2) and LBk being the best-available lower-estimate of θ(w). This rule is inspired by
the following result.

Proposition 20.10 (Improving step size). If wk is not optimal, then, for all optimal dual solutions
w, we have ||wk+1 − w|| < ||wk − w||
for all step sizes λk such that

0 < λk <
2(θ(w)− θ(wk))

||β(xk)||2
.

Proof. We have that ||wk+1 − w||2 = ||wk + λkβ(xk)− w||2 =

||wk − w||2 − 2λk(w − wk)
⊤β(xk) + (λk)

2||β(xk)||2.
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By the subgradient inequality: θ(w)− θ(wk) ≤ (w − wk)
⊤βk. Thus

||wk+1 − w||2 ≤ ||wk − w||2 − 2λk(θ(w)− θ(wk))
⊤β(xk) + (λk)

2||β(xk)||2.

Parametrising the last two terms by γk = λk||β(xk)||2
θ(w)−θ(wk)

leads to

||wk+1 − w||2 ≤ ||wk − w||2 −
γk(2− γk)(θ(w)− θ(wk))

2

||β(xk)||2
.

Notice that if 0 < λk <
2(θ(w)−θ(wk))

||β(xk)||2 then 0 < γk < 2 and, thus, ||wk+1 − w|| < ||wk − w||.

In practice, since θ(w) is not known, it must be replaced by a proxy LBk, which is chosen to be a
lower bound on θ(w) to still satisfy the subgradient inequality. The αk is then reduced from the
nominal value 2 to correct for the estimation error of term θ(w)− θ(wk).



Chapter 21

Penalty methods

21.1 Penalty functions

The employment of penalty functions is a paradigm for solving constrained optimisation problems.
The central idea of this paradigm is to convert the constrained optimisation problem into an
unconstrained optimisation problem that is augmented with a penalty function, which penalises
violations of the original constraints. The role of the penalty function is to allow steering the search
towards feasible solutions in the search for optimal solutions.

Consider the problem (P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. A penalised version of P is
given by

(Pµ) : min. {f(x) + µα(x) : x ∈ X} ,

where µ > 0 is a penalty term and α(x) : Rn → R is a penalty function of the form

α(x) =

m∑

i=1

ϕ(gi(x)) +

l∑

i=1

ψ(hi(x)). (21.1)

For α(x) to be a suitable penalty function, one must observe that ϕ : Rn → R and ψ : Rn → R are
continuous and satisfy

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0

ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

Typical options are ϕ(y) = ([y]+)p with p ∈ Z+ and ψ(y) = |y|p with p = 1 or p = 2.

Figure 21.1 illustrates the solution of (P ) : min.
{
x21 + x22 : x1 + x2 = 1, x ∈ R2

}
using a penalty-

based approach. Using α(x1, x2) = (x1 + x2 − 1)2, the penalised auxiliary problem Pµ becomes
(Pµ) : min.

{
x21 + x22 + µ(x1 + x2 − 1)2 : x ∈ R2

}
. Since fµ is convex and differentiable, necessary

and sufficient optimality conditions ∇fµ(x) = 0 imply:

x1 + µ(x1 + x2 − 1) = 0

x2 + µ(x1 + x2 − 1) = 0,

which gives x1 = x2 = µ
2µ+1 .

One can notice that, as µ increases, the solution of the unconstrained penalised problem, repre-
sented by the level curves, becomes closer to the optimal of the original constrained problem P ,
represented by the dot on the hyperplane defined by x1 + x2 = 1.
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Figure 21.1: Solving the constrained problem P (top left) by gradually increasing the penalty term
µ (0.5, 1, and 5, in clockwise order)

21.1.1 Geometric interpretation

A similar geometrical analysis to that performed with the Lagrangian duals can be employed for
understanding how penalised problems can obtain optimal solutions. For that, let us the problem
from the previous example (P ) : min.

{
x21 + x22 : x1 + x2 = 1, x ∈ R2

}
. Let G : R2 → R2 be a

mapping
{
[h(x), f(x)] : x ∈ R2

}
, and let v(ϵ) = min.

{
x21 + x22 : x1 + x2 − 1 = ϵ, x ∈ R2

}
. The

optimal solution is x1 = x2 = 1+ϵ
2 with v(ϵ) = (1+ϵ)2

2 .

Minimising f(x) + µ(h(x)2) consists of moving the curve downwards until a single contact point
ϵµ remains. One can notice that, as µ→∞, f + µh becomes sharper (µ2 > µ1), and ϵµ converges
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G z = f(x)

h(x) = ϵ

v(ϵ)

ϵµ
ϵµ2

ϵµ1

f + µ2h
2 f + µ1h

2

Figure 21.2: Geometric representation of penalised problems in the mapping G = [h(x), f(x)]

to the optimum ϵµ. Figure 21.2 illustrates this behaviour.

The shape of the penalised problem curve is due to the following. First, notice that

min.
x

{
f(x) + µ

l∑

i=1

(hi(x))
2

}

=min.
x,ϵ

{
f(x) + µ||ϵ||2 : hi(x) = ϵ, i = 1, . . . , l

}

=min.
ϵ

{
µ||ϵ||2 +min.

x
{f(x) : hi(x) = ϵ, i = 1, . . . , l}

}

=min.
ϵ

{
µ||ϵ||2 + v(ϵ)

}
.

Consider l = 1, and let xµ = argminx

{
f(x) + µ

∑l
i=1(hi(x))

2
}

with h(xµ) = ϵµ, implying that

ϵµ = argminϵ
{
µ||ϵ||2 + v(ϵ)

}
. Then, the following holds

1. f(xµ) + µ(h(xµ))
2 = µϵ2µ + v(ϵµ)⇒ f(xµ) = v(ϵµ), since h(xµ) = ϵµ;

2. and v′(ϵµ) = ∂
∂ϵ (f(xµ) + µ(h(xµ))

2 − µϵ2µ) = −2µϵµ.

Therefore, (h(xµ), f(xµ)) = (ϵµ, v(ϵµ)). Denoting f(xµ) + µh(xµ)
2 = kµ, we see the parabolic

function f = kµ − µϵ2 matching v(ϵµ) for ϵ = ϵµ and has the slope −2µϵ, matching that of v(ϵ) at
that point.

21.1.2 Penalty function methods

The convergent behaviour of the penalised problem as the penalty term µ increases inspires the
development of a simple yet powerful method for optimising constrained optimisation problems.

That is, consider the problem P defined as

(P ) : min. f(x)

gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , l,

x ∈ X.

We seek to solve P by solving supµ {θ(µ)} for µ > 0, where

θ(µ) = min. {f(x) + µα(x) : x ∈ X}
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and α(x) is a penalty function as defined in (21.1). For that to be possible, we need first to state
a convergence result guaranteeing that

min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ).

In practice, that would mean that µk can be increased at each iteration k until a suitable tolerance
is achieved. Theorem 21.1 states the convergence of penalty based methods.

Theorem 21.1 (Convergence of penalty-based methods). Consider the problem P , where f , gi
for i = 1, . . . ,m, and hi for i = 1, . . . , l are continuous, and X ⊂ Rn a compact set. Suppose that,
for each µ, there exists xµ = argmin {f(x) + α(x) : x ∈ X}, where α is a suitable penalty function
and {xµ} is contained within X. Then

min
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup

µ≥0
{θ(µ)} = lim

µ→∞
θ(µ),

where θ(µ) = minx {f(x) + µα(x) : x ∈ X} = f(xµ) + µα(xµ). Also, the limit of any convergent
subsequence of {xµ} is optimal to the original problem and µα(xµ)→ 0 as µ→∞.

Proof. We first show that θ(µ) are nondecreasing function of µ. Let 0 < λ < µ. From the definition
of θ(µ), we have that

f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ) (21.2)

Adding and subtracting µα(xµ) in the left side of (21.2), we conclude that θ(µ) ≥ θ(λ). Now, for
x ∈ X with g(x) ≤ 0 and h(x) = 0, notice that α(x) = 0. This implies that

f(x) = f(x) + µα(x) ≥ inf
x
{f(x) + µα(x) : x ∈ X} = θ(µ) (21.3)

and, therefore, θ(µ) is bounded above, and thus supµ≥0 θ(µ) = limµ→∞ θ(µ). For that to be the
case, we must have that µα(xµ)→ 0 as µ→∞. Moreover, we notice from (21.3) that

min
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} ≥ lim

µ→∞
θ(µ). (21.4)

On the other hand, take any convergent subsequence {xµk
} of {xµ}µ→∞ with limit x. Then

sup
µ≥0

θ(µ) ≥ θ(µk) = f(xµk
) + µα(xµk

) ≥ f(xµk
).

Since xµk
→ x as µ → ∞ and f is continuous, this implies that supµ≥0 θ(µ) ≥ f(x). Combined

with (21.4), we have that f(x) = supµ≥0 {θ(µ)} and thus the result follows.

The proof starts by demonstrating the nonincreasing behaviour of penalty functions and nonde-
creasing behaviour of θ(µ) to allow for convergence. By noticing that

f(xµ) + λα(xµ) + µα(xµ)− µα(xµ) = θ(µ) + (λ− µ)α(xµ) ≥ f(xλ) + λα(xλ) = θ(λ)

and that λ−µ < 0, we can infer that θ(µ) ≥ θ(λ). It is also interesting to notice how the objective
function f(x) and infeasibility α(x) behave as we increase the penalty coefficient µ. For that,
notice that using the same trick in the proof for two distinct values 0 < λ < µ, we have

1. f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ)
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2. f(xλ) + µα(xλ) ≥ f(xµ) + µα(xµ).

Notice that in 1, we use the fact that xλ = argminx θ(λ) = argminx {f(x) + λα(x)} and therefore,
must be less or equal then f(xµ)+λα(xµ) for an arbitrary xµ ∈ X. The same logic is employed in
2, but reversed in λ and µ. Adding 1 and 2, we obtain (µ− λ)(α(xλ)− α(xµ)) ≥ 0 and conclude
that α(xµ) ≤ α(xλ) for µ > λ, i.e., that α(x) is nonincreasing in µ.

Moreover, from the first inequality, we have that f(xµ) ≥ f(xλ). Notice how this goes in line with
what one would expect from the method: as we increase the penalty coefficient µ, the optimal
infeasibility, measured by α(xµ) decreases, while the objective function value f(xµ) worsens at it
is slowly “forced” to be closer to the original feasible region.

Note that the assumption of compactness plays a central role in this proof, such that θ(µ) can be
evaluated for any µ as µ→∞. Though this is a strong assumption, it tends to not be so restrictive
in practical cases, since variables typically lie within finite lower and upper bounds. Finally, notice
that α(x) = 0 implies that x is feasible for gi for i = 1, . . . ,m, and hi for i = 1, . . . , l, and thus
optimal for P . This is stated in the following corollary.

Corollary 21.2. If α(xµ) = 0 for some µ, then xµ is optimal for P .

Proof. If α(xµ) = 0, then xµ is feasible. Moreover, xµ is optimal, since

θ(µ) = f(xµ) + µα(xµ)

= f(xµ) ≤ inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} .

A technical detail of the proof of Theorem 21.1 is that the convergence of such approach is asymp-
totically, i.e., by making µ arbitrarily large, xµ can be made arbitrarily close to the true optimal x
and θ(µ) can be made arbitrarily close to the optimal value f(x). In practice, this strategy tends
to be prone to computational instability.

The computational instability arises from the influence that the penalty term exerts in some of the
eigenvalues of the Hessian of the penalised problem. Let Hµ(xµ) be the Hessian of the penalised

function at xµ. Recall that conditioning is measured by κ =
maxi=1,...,n λi

mini=1,...,n λi
, where {λi}i=1,...,n are

the eigenvalues of Hµ(xµ). Since the influence is only on some of the eigenvalues, this affects the
conditioning of the problem and might lead to numerical instabilities. An indication of that can
be seen in Figure 21.1, where one can notice the elongated profile of the function as the penalty
term µ increases.

Consider the following example. Let the penalised function fµ(x) = x21 + x22 + µ(x1 + x2 − 1)2.

The Hessian of fµ(x) is

∇2fµ(x) =

[
2(1 + µ) 2µ

2µ 2(1 + µ)

]
.

Solving det(∇2fµ(x) − λI) = 0, we obtain λ1 = 2, λ2 = 2(1 + 2µ), with eigenvectors (1,−1)
and (1, 1), which gives κ = (1 + 2µ). This illustrates that the eigenvalues, and consequently the
conditioning number, is proportional to the penalty term.

21.2 Augmented Lagrangian method of multipliers

For simplicity, consider the (primal) problem P as (P ) : min. {f(x) : hi(x) = 0, i = 1, . . . , l}. The
augmented Lagrangian method of multipliers arises from the idea of seeking for a penalty term
that would allow for exact convergence for a finite penalty.
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Figure 21.3: Geometric representation of augmented Lagrangians in the mapping G = [h(x), f(x)]

Considering the geometrical interpretation in Figure 21.2, one might notice that a horizontal shift
in the penalty curve would allow for the extreme point of the curve to match the optimum on the
z ordinate.

Therefore, we consider a modified penalised problem of the form

fµ(x) = f(x) + µ

l∑

i=1

(hi(x)− θi)2

where θi is the shift term. One can notice that

fµ(x) = f(x) + µ

l∑

i=1

(hi(x)− θi)2

= f(x) + µ

l∑

i=1

hi(x)
2 −

l∑

i=1

2µθihi(x) + µ

l∑

i=1

θ2i

= f(x) +

l∑

i=1

vihi(x) + µ

l∑

i=1

hi(x)
2,

with vi = −2µθi. The last term is a constant and can be dropped.

The term augmented Lagrangian refers to the fact that fµ(x) is equivalent to the Lagrangian
function of problem P , augmented by the penalty term.

This allows for noticing important properties associated with the augmented Lagrangian fµ(x).
For example, assume that (x, v) is a KKT solution to P . Then the optimality condition

∇xfµ(x) = ∇f(x) +
l∑

i=1

vi∇hi(x) + 2µ

l∑

i=1

hi(x)∇hi(x) = 0,

implies that the optimal solution x can be recovered using a finite penalty term µ, unlike with
the previous penalty-based method. The existence of finite penalty terms µ > 0 that can recover
optimality has an interesting geometrical interpretation, in light of what was previously discussed.
Consider the same setting from Figure 21.2, but now we consider curves of the form f+vh+µh2 = k.
This is illustrated in Figure 21.3.

Optimising the augmented Lagrangian function amounts to finding the curve f + vh + µh2 = k
in which v(ϵ) = k. The expression for k can be conveniently rewritten as f = −µ [h+ (v/2µ)]

2
+[

k + (v2/4µ)
]
, exposing that f is a parabola shifted by h = −v/2µ.
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21.2.1 Augmented Lagrangian method of multipliers

We can employ an unconstrained optimisation method to solve the augmented Lagrangian function

Lµ(x, v) = f(x) +

l∑

i=1

vihi(x) + µ

l∑

i=1

hi(x)
2,

which amount to rely on strong duality and search for KKT points (or primal-dual pairs) (x, v) by
iteratively operating in the primal (x) and dual (v) spaces. In particular, the strategy consists of

1. Primal space: optimise Lµ(x, v
k) using an unconstrained optimisation method

2. Dual space: perform a dual variable update step retaining the optimality condition∇xL(x
k+1, vk) =

∇xL(x
k+1, vk+1) = 0

This strategy is akin to applying the subgradient method to solving the augmented Lagrangian
dual. The update step for the dual variable is given by

vk+1 = vk + 2µh(xk+1).

The motivation for the dual step update stems from the following observation:

1. h(xk) is a subgradient of Lµ(x, v) at x
k for any v.

2. The step size is devised such that the optimality condition of the Lagrangian function is
retained, i.e., ∇xL(x

k, vk+1) = 0.

Part 2 refers to the following:

∇xL(x
k, vk+1) = ∇f(xk) +

l∑

i=1

vk+1
i ∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1

(vki + 2µhi(x
k))∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1

vki∇hi(xk)+
l∑

i=1

2µhi(x
k)∇hi(xk) = ∇xLµ(x

k, vk) = 0.

That is, by employing vk+1 = vk +2µh(xk+1) one can retain optimality in the dual variable space
for the Lagrangian function from the optimality conditions of the penalised functions, which is a
condition for x to be a KKT point.

Algorithm 23 summarises the augmented Lagrangian method of multipliers (ALMM).

Algorithm 19 Augmented Lagrangian method of multipliers (ALMM)

1: initialise. tolerance ϵ > 0, initial dual solution v0, iteration count k = 0
2: while |h(xk)| > ϵ do
3: xk+1 = argminLµ(x, v

k)
4: vk+1 = vk + 2µh(xk+1)
5: k = k + 1
6: end while
7: return xk.
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The method can be specialised such that µ is individualised for each constraint and updated
proportionally to the observed infeasibility hi(x). Such a procedure is still guaranteed to converge,
as the requirement in Theorem 21.1 that µ→∞ is still trivially satisfied.

One important point about the augmented Lagrangian method of multipliers is that linear conver-
gence is to be expected, due to the gradient-like step taken to find optimal dual variables. This is
often the case with traditional Lagrangian duality based approaches.

21.2.2 Alternating direction method of multipliers - ADMM

ADMM is a distributed version of the augmented Lagrangian method of multipliers, and is more
suited to large problems with a decomposable structure.

Consider the problem P to be of the following form:

(P ) : min. f(x) + g(y)

s.t.: Ax+By = c.

We would like to be able to solve the problem separately for x and y, which could, in principle be
achieved using ALMM. However, the consideration of the penalty term prevents the problem from
being completely separable. To see that, let

ϕ(x, y, v) = f(x) + g(y) + v⊤(c−Ax−By) + µ(c−Ax−By)2

be the augmented Lagrangian function. One can notice that the penalty term µ(c − Ax − By)2
prevents the separation of the problem in terms of the x and y variables. However, separability can
be recovered is one employs a coordinate descent approach in which three blocks are considered:
x, y, and v. The ADMM is summarised in Algorithm 24.

Algorithm 20 ADMM

1: initialise. tolerance ϵ > 0, initial dual and primal solutions v0 and y0, k = 0
2: while |c−Axk −Byk| and ||yk+1 − yk|| > ϵ do
3: xk+1 = argminϕµ(x, y

k, vk)
4: yk+1 = argminϕµ(x

k+1, y, vk)
5: vk+1 = vk + 2µ(c−Axk+1 −Byk+1)
6: k = k + 1
7: end while
8: return (xk, yk).

One important feature regarding ADMM is that the coordinate descent steps are taken in a cyclic
order, not requiring more than one (x, y) update step. Variants consider more than one of these
steps, but no clear benefit in practice has been observed. Moreover, µ can be updated according
to the amount of infeasibility observed at iteration k, but no generally good update rule is known.

ADMM is particularly relevant as a method for (un)constrained problems in which it might expose
a structure that can be exploited, such as having in some of the optimisation problems (in Lines
3 and 4 in Algorithm 24) that might have solutions in closed forms.
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Barrier methods

22.1 Barrier functions

In essence, barrier methods also use the notion of using proxies for the constraints in the objective
function, so that an unconstrained optimisation problem can be solved instead. However, the
concept of barrier functions is different than penalty functions in that they are defined to prevent
the solution search method from leaving the feasible region, which is why some of these methods
are also called interior point methods.

Consider the primal problem P being defined as

(P ) : min. f(x)

s.t.: g(x) ≤ 0

x ∈ X.

We define the barrier problem BP as

(BP ) : inf
µ
θ(µ)

s.t.: µ > 0

where θ(µ) = infx {f(x) + µB(x) : g(x) < 0, x ∈ X} and B(x) is a barrier function. The barrier
function is such that its value approaches +∞ as the boundary of the region {x : g(x) ≤ 0} is
approached from its interior. Notice that, in practice, it means that the constraint g(x) < 0 can
be dropped, as they are automatically enforced by the barrier function.

The barrier function B : Rm → R is such that

B(x) =

m∑

i=1

ϕ(gi(x)), where

{
ϕ(y) ≥ 0, if y < 0;

ϕ(y) = +∞, when y → 0−.
(22.1)

Examples of barrier functions that impose this behaviour are

• B(x) = −∑m
i=1

1
gi(x)

• B(x) = −∑m
i=1 ln(min {1,−gi(x)})

Perhaps the most important barrier function is the Frisch’s log barrier function, used in the highly
successful primal-dual interior point methods. We will describe its use later. The log barrier is
defined as

B(x) = −
m∑

i=1

ln(−gi(x)).
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Figure 22.1: The barrier function for different values of µ

Figure 22.1 illustrates the behaviour of the barrier function. Ideally, the barrier function B(x)
has the role of an indicator function, which is zero for all feasible solutions x ∈ {x : g(x) < 0} but
assume infinite value if a solution is at the boundary g(x) = 0 or outside the feasible region. This
is illustrated in the dashed line in Figure 22.1. The barrier functions for different values of barrier
term µ illustrate how the log barrier mimics this behaviour, becoming more and more pronounced
as µ decreases.

22.2 The barrier method

In a similar nature to what was developed for penalty methods, we can devise a solution method
that successively solves the barrier problem θ(µ) for decreasing values of the barrier term µ.

We start by stating the result that guarantees convergence of the barrier method.

Theorem 22.1 (Convergence of barrier methods). Let f : Rn → R and g : Rn → R be continuous
functions and X ∈ Rn a nonempty closed set in problem P . Suppose {x ∈ Rn : g(x) < 0, x ∈ X}
is not empty. Let x be the optimal solution of P such that, for any neighbourhood Nϵ(x) =
{x : ||x− x|| ≤ ϵ}, there exists x ∈ X ∩Nϵ for which g(x) < 0. Then

min {f(x) : g(x) ≤ 0, x ∈ X} = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ).

Letting θ(µ) = f(xµ) + µB(xµ), where B(x) is a barrier function as described in (22.1), xµ ∈ X
and g(xµ) < 0, the limit of {xµ} is optimal to P and µB(xµ)→ 0 as µ→ 0+.
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Proof. First, we show that θ(µ) is a nondecreasing function in µ. For µ > λ > 0 and x such that
g(x) < 0 and x ∈ X, we have

f(x) + µB(x) ≥ f(x) + λB(x)

inf
x
{f(x) + µB(x)} ≥ inf

x
{f(x) + λB(x)}

θ(µ) ≥ θ(λ).

From these, we conclude that limµ→0+ θ(µ) = inf {θ(µ) : µ > 0}. Now, let ϵ > 0. As x is optimal,
by assumption there exists some x̂ ∈ X with g(x̂) < 0 such that f(x) + ϵ > f(x̂). Then, for µ > 0
we have

f(x) + ϵ+ µB(x̂) > f(x̂) + µB(x̂) ≥ θ(µ).
Letting µ → 0+, it follows that f(x) + ϵ ≥ limµ→0+ θ(µ), which implies f(x) ≥ limµ→0+ θ(µ) =
inf {θ(µ) : µ > 0}. Conversely, since B(x) ≥ 0 and g(x) < 0 for some µ > 0, we have

θ(µ) = inf {f(x) + µB(x) : g(x) < 0, x ∈ X}
≥ inf {f(x) : g(x) < 0, x ∈ X}
≥ inf {f(x) : g(x) ≤ 0, x ∈ X} = f(x).

Thus f(x) ≤ limµ→0+ θ(µ) = inf {θ(µ) : µ > 0}. Therefore, f(x) = limµ→0+ θ(µ) = inf {θ(µ) : µ > 0}.

The proof has three main steps. First, we show that θ(µ) is a nondecreasing function in µ,
which implies that limµ→0+ θ(µ) = inf {θ(µ) : µ > 0}. This can be trivially shown as only feasible
solutions x are required to be considered.

Next, we show the convergence of the barrier method by showing that infµ>0 θ(µ) = f(x), where
x = argmin {f(x) : g(x) ≤ 0, x ∈ X} = limµ→0+ θ(µ) = infµ>0 θ(µ). The optimality of x implies
that f(x̂) − f(x) < ϵ for feasible x̂ and ϵ > 0. Moreover, B(x̂) ≥ 0 by definition. In the last
part, we use the argument that including the boundary can only improve the objective function
value, leading to the last inequality. It is worth highlighting that, to simplify the proof, we have
assumed that the barrier function has the form described in (22.1). However, a proof in the veins of
Theorem 22.1 can be still be developed for the Frisch log barrier (for which B(x) is not necessarily
nonnegative) since, essentially, (22.1) only needs to be observed in a neighbourhood of g(x) = 0.

The result in Theorem 22.1 allows to design a optimisation methods that, starting from a strictly
feasible (interior) solution, is based on successively reducing the barrier term until a solution with
arbitrarily small barrier term is obtained. Algorithm 23 present a pseudo code for such method.

Algorithm 21 Barrier method

1: initialise. ϵ > 0, x0 ∈ X with g(xk) < 0, µk, β ∈ (0, 1), k = 0.
2: while µkB(xk) > ϵ do
3: xk+1 = argmin

{
f(x) + µkB(x) : x ∈ X

}

4: µk+1 = βµk, k = k + 1
5: end while
6: return xk.

One important aspect to notice is that starting the algorithm requires a strictly feasible point,
which in some applications, might be challenging to be obtained. This characteristic is what
renders the name interior point methods for this class of algorithms.
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Figure 22.2: Example 1: solving a one-dimensional problem with the barrier method

Consider the following example. Let P =
{
(x+ 1)2 : x ≥ 0

}
. Let us assume that we use the barrier

function B(x) = − ln(x). Then, we unconstrained barrier problem becomes

(BP ) : min.
x

(x+ 1)2 − µ ln(x). (22.2)

Since this is a convex function, the first order condition f ′(x) = 0 is necessary and sufficient
for optimality. Thus, solving 2(x + 1) − µ

x = 0 we obtain the positive root and unique solution

xµ = −1
2 +

√
4+8µ
4 . Figure X shows the behaviour of the problem as µ converges to zero. As can

be seen, as µ→ 0, the optimal solution xµ converges to the constrained optimum x = 0.

We now consider a more involved example. Let us consider the problem

P = min.
{
(x1 − 2)4 + (x1 − 2x2)

2 : x21 − x2 ≤ 0
}

with B(x) = − 1
x2
1−x2

. We implemented Algorithm 23 and solved it with two distinct values for the

penalty term µ and reduction term β. Figure 22.2 illustrate the trajectory of the algorithm with
each parametrisation, exemplifying how these can affect the convergence of the method.

22.3 Interior point method for LP/QP problems

Perhaps ironically, the most successful applications of barrier methods in terms of efficient im-
plementations are devoted to solving linear and quadratic programming (LP/QP) problems. The
primal-dual interior point method has become in the last decade the algorithm of choice for many
applications involving large-scale LP/QP problems.

To see how barrier methods can be applied to LP problems, consider the following primal/dual
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Figure 22.3: The trajectory of the barrier method for problem P . Notice how the parameters
influence the trajectory and number of iterations. The parameters on the left require 27 iterations
while those on the right require 40 iterations for convergence.

pair formed by a LP primal P

(P ) : min. c⊤x

s.t.: Ax = b : v

x ≥ 0 : u

and its respective dual formulation D

(D) : max. b⊤v

s.t.: A⊤v + u = c

u ≥ 0, v ∈ Rm.

The optimal solution (x, v, u) = w is such that it satisfies KKT conditions of P , given by

Ax = b, x ≥ 0

A⊤v + u = c, u ≥ 0, v ∈ Rm

u⊤x = 0.

These are going to be useful as a reference for the next developments. We start by considering the
barrier problem for P by using the logarithmic barrier function to represent the condition x ≥ 0.
Thus, the barrier problem BP can be defined as

(BP ) : min. c⊤x− µ
n∑

i=1

ln(xj)

s.t.: Ax = b.

Notice that this problem is a strictly-convex equality constrained problem that is suitable to be
solved using the constrained variant of Newton’s method (which simply consists of employing New-
ton’s method to solve the KKT conditions of equality constrained problems). Moreover, observe
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that the KKT conditions of BP are

Ax = b, x > 0

A⊤v = c− µ
(

1

x1
, . . . ,

1

xn

)

Notice that, since µ > 0 and x > 0, u = µ
(

1
x1
, . . . , 1

xn

)
serves as an estimate for the Lagrangian

dual variables. To further understand the relationship between the optimality conditions of BP
and P , let us define X ∈ Rn×n and U ∈ Rn×n as

X = diag(x) =




. . .

xi
. . .


 and U = diag(u) =




. . .

ui
. . .




and let e = [1, . . . , 1]⊤ be a vector of ones of suitable dimension. We can rewrite the KKT conditions
of BP as

Ax = b, x > 0 (22.3)

A⊤v + u = c (22.4)

u = µX−1e ⇒ XUe = µe. (22.5)

Notice how the condition (22.5) resembles the complementary slackness from P , but relaxed to be
µ instead of zero. This is why this system is often referred to as the perturbed KKT system.

Theorem 22.11 guarantees that wµ = (xµ, vµ, uµ) approaches the optimal primal-dual solution of
P as µ→ 0+. The trajectory formed by successive solutions {wµ} is called the central path, which
is due to the interiority enforced by the barrier function. When the barrier term µ is large enough,
the solution of the barrier problem is close to the analytic centre of the feasibility set. The analytic
centre of a polyhedral set S = {x ∈ Rn : Ax ≤ b} is given by

max.
x

m∏

i=1

(bi − a⊤i x)

s.t.: x ∈ X,

which corresponds to finding the point of maximum distance to each of the hyperplanes forming
the polyhedral set. This is equivalent to the convex problem

min.
x

m∑

i=1

− ln(bi − a⊤i x)

s.t.: x ∈ X,

and thus justifying the nomenclature.

One aspects should be observed for defining stopping criterion. Notice that the term u⊤x is such

1In fact, we require a slight variant fo Theorem 1 that allow for B(x) ≥ 0 only being required in a neighbourhood
of g(x) = 0.
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that it measures the duality gap at a given solution. That is, notice that

c⊤x = (A⊤v + u)⊤x

= (A⊤v)⊤x+ u⊤x

= v⊤(Ax) + u⊤x

c⊤x− b⊤v = u⊤x =

n∑

i=1

uixi =

n∑

i=1

(
µ

xi

)
xi = nµ.

which gives the total slack violation that can be used to determine the convergence of the algorithm.

22.3.1 Primal/dual path-following interior point method

The primal/dual path following interior point method (IPM) is the specialised version of the setting
described earlier for solving LP/QP problems.

It consists of building upon employing logarithmic barriers to LP/QP problems and solving the sys-
tem (22.3) - (22.5) using Newton’s method. However, instead of solving the problem to optimality
for each µ, only a single Newton step is taken before the barrier term µ is reduced.

Suppose we start with a µ > 0 and a wk = (xk, vk, uk) sufficiently close to wµ. Then, for a
sufficiently small β ∈ (0, 1), βµ will lead to a wk+1 sufficiently close to wβµ. Figure 22.4 illustrates
this effect, showing how a suboptimal solution xk do not necessarily need to be in the central path
(denoted by the dashed line) to guarantee convergence, as long as they are guaranteed to remain
within the some neighbourhood Nµ(θ) of the central path.

x+∞

xµ2

xµ1

xk

xk+1 c

Nµ2(θ)

Nµ1(θ)

Figure 22.4: an illustrative representation of the central path and how the IPM follows it approx-
imately.

For example, let Nµ(θ) = ||Xµ Uµe− µe|| ≤ θµ. Then, by selecting β = 1− σ√
n
, σ = θ = 0.1, and

µ0 = (x⊤u)/n, successive Newton steps are guaranteed to remain within Nµ(θ).

To see how the setting works, let the perturbed KKT system (22.3) – (22.5) for each µ̂ be denoted
as H(w) = 0. Let J(w) be the Jacobian of H(w) at w.
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Applying Newton’s method to solve H(w) = 0 for w, we obtain

J(w)dw = −H(w) (22.6)

where dw = (w − w). By rewriting dw = (dx, dv, du), (23.1) can be equivalently stated as


A 0⊤ 0

0 A⊤ I

U 0⊤ X






dx

dv

du


 =




0

0

µ̂e−X Ue


 . (22.7)

The system (22.7) is often referred to as the Newton’s system.

In practice, the updates incorporate primal and dual infeasibility, which precludes the need of
additional mechanisms to guarantee primal and dual feasibility throughout the algorithm. This
can be achieved with a simple modification in the Newton system, rendering the direction update
step 


A 0⊤ 0

0 A⊤ I

Uk 0⊤ Xk






dk+1
x

dk+1
v

dk+1
u


 = −




Axk − b
A⊤vk + uk − c
XkUke− µk+1e


 , (22.8)

To see how this still leads to primal and dual feasible solutions, consider the primal residuals (i.e.,
the amount of infeasibility) as rp(x, u, v) = Ax− b and the dual residuals rd(x, u, v) = A⊤v+u− c.
Now, let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)), recalling that wk = (x, v, u). The optimality
conditions can be expressed as requiring that the residuals must vanish, that is r(w) = 0.

Now, consider the first-order Taylor approximation for r at w for a step dw

r(w + dw) ≈ r(w) +Dr(w)dw,

where Dr(w) is the derivative of r evaluated at w, which is given by the two first rows of the
Newton system (22.7). The step dw for which the residue vanishes is

Dr(w)dw = −r(w), (22.9)

which is the same as (23.1) without the bottom equation. Now, if we consider the directional
derivative of the square of the norm of r in the direction dw, we obtain

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w), (22.10)

which is strictly decreasing. That is, the step dw is such that it will make the residual decrease
and eventually become zero. From that point onwards, the Newton system will take the form of
(22.7).

The algorithm proceeds by iteratively solving the system (22.8) with µk+1 = βµk with β ∈ (0, 1)
until nµk is less than a specified tolerance. Algorithm 24 summarises a simplified form of the IPM.

Algorithm 22 Interior point method (IPM) for LP

1: initialise. primal-dual feasible wk, ϵ > 0, µk, β ∈ (0, 1), k = 0.
2: while nµ = c⊤xk − b⊤vk > ϵ do
3: compute dwk+1 = (dxk+1 , dvk+1 , duk+1) using (22.8) and wk.
4: wk+1 = wk + dwk+1

5: µk+1 = βµk, k = k + 1
6: end while
7: return wk.
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Figure 22.5 illustrates the behaviour of the IPM when employed to solve the linear problem

min. x1 + x2

s.t.: 2x1 + x2 ≥ 8

x1 + 2x2 ≥ 10,

x1, x2 ≥ 0

considering two distinct initial penalties µ. Notice how higher penalty values enforce a more
central convergence of the method. Some points are worth noticing concerning Algorithm 24.
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Figure 22.5: IPM applied to a LP problem with two different barrier terms

First, notice that in Line 4, a fixed step size is considered. A line search can be incorporated to

prevent infeasibility and improve numerical stability. Typically, it is used λki = min
{
α,−xk

i

dk
i

}
with

α < 1 but close to 1.

Also, even though the algorithm is initialised with a feasible solution wk, this might in practice
not be necessary. Implementations of the infeasible IPM method can efficiently handle primal and
dual infeasibility.

Under specific conditions, the IPM can be shown to have complexity of O(
√
n ln(1/ϵ)), which is

polynomial and of much better worst-case performance than the simplex method, which makes it
the algorithm of choice for solving large-scale LPs. Another important advantage is that IPM can
be modified with little effort to solve a wider class of problems under the class of conic optimisation
problems.
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Predictor-corrector methods are variants of IPM that incorporate a two-phase direction calculation
using a predicted direction dpredw , calculated by setting µ = 0 and a correcting direction, which is
computed considering the impact that dcorw would have in the term X Ue.

Let ∆X = diag(dpredx ) and ∆U = diag(dpredu ). Then

(X +∆X)(U +∆U)e = XUe+ (U∆X +X∆U)e+∆X∆Ue

= XUe+ (0−XUe) + ∆X∆Ue

= ∆X∆Ue (22.11)

Using the last equation (22.11), the corrector Newton step becomes Udx +Xdu = µ̂e−∆X∆Ue.
Finally, dkw is set to be a combination of dpredw and dcorw .
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Primal methods

23.1 The concept of feasible directions

Feasible direction methods are a class of methods that incorporate both improvement and fea-
sibility requirements when devising search directions. As feasibility is also observed throughout
the solution process, they are also referred to as primal methods. However, depending. on the
geometry of the feasible region, it might be so that the method allow for some infeasibility in the
course of the algorithm, as we will see later.

An improving feasible direction can be defined as follows.

Definition 23.1. Consider the problem min. {f(x) : x ∈ S} with f : Rn → R and ∅ ̸= S ⊆ Rn.
A vector d is a feasible direction at x ∈ S if exists δ > 0 such that x + λd ∈ S for all λ ∈ (0, δ).
Moreover, d is an improving feasible direction at x ∈ S if there exists a δ > 0 such that f(x+λd) <
f(x) and x+ λd ∈ S for λ ∈ (0, δ).

The key feature of feasible direction methods is the process of deriving such directions and asso-
ciated step sizes that retain feasibility, even if approximately. Similarly to the other methods we
have discussed in the past lectures, these methods progress following two basic steps:

1. Obtain an improving feasible direction dk and a step size λk;

2. Make xk+1 = xk + λkdk.

As a general rule, for a feasible direction method to perform satisfactorily, it must be that the
calculation of the directions dk and step sizes λk are simple enough. Often, these steps can be
reduced to closed forms or, more frequently, solving linear or quadratic programming problems, or
even from posing modified Newton systems.

23.2 Conditional gradient - the Frank-Wolfe method

The conditional gradient method is named as such due to the direction definition step, in which
the direction d is selected such that the angle between the gradient ∇f(x) and d is as close to 180◦

degrees as the feasible region S allows.

Recall that, if ∇f(xk) is a descent direction, then

∇f(xk)⊤(x− xk) < 0 for x ∈ S.

317
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A straightforward way to obtain improving feasible directions d = (x − xk) is by solving the
direction search problem DS of the form

(DS) : min.
{
∇f(xk)⊤(x− xk) : x ∈ S

}
.

Problem DS consists of finding the furtherest feasible point in the direction of the gradient, that is
we move in the direction of the gradient, under condition that we stop if the line search mandates
so, or that the search reach at the boundary of the feasible region. This is precisely what gives the
name conditional gradient.

By letting xk = argminx∈S

{
∇f(xk)⊤(x− xk)

}
and obtaining λk ∈ (0, 1] employing a line search,

the method iterates making

xk+1 = xk + λk(xk − xk).

One important condition to observe is that λk has to be constrained such that λ ∈ (0, 1] to
guarantee feasibility, as xk is feasible by definition. Also, notice that the condition ∇f(xk) = 0
might never be achieved, since it might be so that the unconstrained optimum is outside the feasible
region S. In that case, after two successive iterations we will observe that xk = xk−1 and thus
that dk = 0. This eventual stall of the algorithm will happen at a point xk satisfying first-order
(constrained) optimality conditions. Therefore, the term ∇f(x)⊤dk will become zero regardless
whether the minimum of them function belongs to S, and is hence used as the stopping condition
of the algorithm. Algorithm 23 summarises the Frank-Wolfe method.

Algorithm 23 Franke-Wolfe method

1: initialise. ϵ > 0, x0 ∈ S, k = 0.
2: while ∇|f(x)⊤dk| > ϵ do
3: xk = argmin

{
∇f(xk)⊤d : x ∈ S

}

4: dk = xk − xk
5: λk = argminλ

{
f(xk + λdk) : 0 ≤ λ ≤ λ

}

6: xk+1 = xk + λkdk

7: k = k + 1
8: end while
9: return xk

Notice that, for a polyhedral feasibility set, the subproblems are linear programming problems,
meaning that the Frank-Wolfe method can be restarted fairly efficiently using dual simplex at each
iteration.

Figure 23.1 shows the employment of the FW method for optimising a nonlinear function within
a polyhedral feasibility set. We consider the problem

min. e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10

s.t.: 2x1 + 3x2 ≤ 8

x1 + 4x2 ≤ 6, x1, x2 ≥ 0

starting from (0, 0) and using an exact line search to set step sizes λ ∈ [0, 1]. Notice that the
method can be utilised with inexact line searches as well.
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Figure 23.1: The Frank-Wolfe method applied to a problem with linear constraints. The algorithm
takes 2 steps using an exact line search (left) and 15 with Armijo line search (right).

23.3 Sequential quadratic programming

Sequential quadratic programming (SQP) is a method inspired by the idea that the KKT system of
a nonlinear problem can be solved using Newton’s method. It consists perhaps of the most general
method in terms of considering both nonlinear constraints and nonlinear objective function.

To see how that works, let us first consider an equality constraint problem P as

P = min. {f(x) : h(x) = 0, i = 1, . . . , l} .

The KKT conditions for P are given by the system W (x, v) where

W (x, v) =

{
∇f(x) +∑l

i=1 vi∇hi(x) = 0

hi(x) = 0, i = 1, . . . , l

Using the Newton(-Raphson) method, we can solve W (x, v). Starting from (xk, vk), we can solve
W (x, v) by successively employing Newton steps of the form

W (xk, vk) +∇W (xk, vk)

[
x− xk
v − vk

]
= 0. (23.1)

Upon closer inspection, one can notice that the term ∇W (x, v) is given by

∇W (xk, vk) =

[
∇2L(xk, vk) ∇h(xk)⊤
∇h(xk) 0

]
,

where

∇2L(xk, vk) = ∇2f(xk) +

l∑

i=1

vki∇2hi(x
k)
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is the Hessian of the Lagrangian function

L(x, v) = f(x) + v⊤h(x)

at xk. Now, setting d = (x− xk), we can rewrite (23.1) as

∇2L(xk, vk)d+∇h(xk)⊤v = −∇f(xk) (23.2)

∇h(xk)d = −h(xk), (23.3)

which can be repeatedly solved until

||(xk, vk)⊤ − (xk−1, vk−1)⊤|| = 0,

i.e., convergence, is observed. Then, (xk, vk) is a KKT point by definition.

This is fundamentally the underlying idea of SQP, however the approach is taken under a more
specialised setting. Instead of relying on Newton steps, we resort on successively solving quadratic
subproblems of the form

QP (xk, vk) : min. f(xk) +∇f(xk)⊤d+ 1

2
d⊤∇2L(xk, vk)d (23.4)

s.t.: hi(x
k) +∇hi(xk)⊤d = 0, i = 1, . . . , l. (23.5)

Notice that QP is a linearly constrained quadratic programming problem, for which we have seen
several solution approaches. Moreover, notice that the optimality conditions of QP are given by
(23.2) and (23.3), where v is the dual variable associated with the constraints in (23.5), which, in
turn, represent first-order approximations of the original constraints.

The objective function in QP can be interpreted as being a second-order approximation of f(x)

enhanced with the term (1/2)
∑l

i=1 v
k
i d

⊤∇2hi(x
k)d that captures constraint curvature information.

An alternative interpretation for the objective function of QP is to notice that it consists of the
second order approximation of the Lagrangian function L(x, v) = f(x) +

∑l
i=1 vihi(x) at (x

k, vk),
which is given by

L(x, v) ≈ L(xk, vk) +∇xL(x
k, vk)⊤d+

1

2
d⊤∇2L(xk, vk)d

= f(xk) + vk
⊤
h(xk) + (∇f(xk) + vk

⊤∇h(xk))⊤d+ 1

2
d⊤(∇2f(xk) +

l∑

i=1

vki∇2hi(x
k))d

To see this, notice that terms f(xk), vk⊤h(xk) are constants and that ∇h(xk)⊤(x− xk) = 0 (from
(23.5), as h(xk) = 0).

The general subproblem in the SQP method can be stated as

QP (xk, uk, vk) : min. ∇f(xk)⊤d+ 1

2
d⊤∇2L(xk, uk, vk)d

s.t.: gi(x
k) +∇gi(xk)⊤d ≤ 0, i = 1, . . . ,m

hi(x
k) +∇hi(xk)⊤d = 0, i = 1, . . . , l,

which includes inequality constraints gi(x) ≤ 0 for i = 1, . . . ,m in a linearised from and their
respective associated Lagrangian multipliers ui, for i = 1, . . . ,m. This is possible since we are
using an optimisation setting rather than a Newton system that only allows for equality constraints,
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even though the latter can be obtained by simply introducing slack variables. Clearly, there are
several option that could be considered to handle this quadratic problem, including employing a
primal/dual interior point method.

A pseudocode for the standard SQP method is presented in Algorithm 24.

Algorithm 24 SQP method

1: initialise. ϵ > 0, x0 ∈ S, u0 ≥ 0, v0, k = 0.
2: while ||dk|| > ϵ do
3: dk = argminQP (xk, uk, vk)
4: obtain uk+1, vk+1 from QP (xk, uk, vk)
5: xk+1 = xk + dk, k = k + 1.
6: end while
7: return xk.

Notice that in Line 4, dual variable values are retrieved from the constraints in QP (xk, uk, vk).
therefore, QP (xk, uk, vk) needs to be solved by an algorithm that can return these dual variables,
such as the (dual) simplex method.

Figure 23.2 illustrates the behaviour of the SQP method on the problem. Notice how the trajec-
tory might eventually become infeasible due to the consideration of linear approximations of the
nonlinear constraint.

min.
{
2x21 + 2x22 − 2x1x2 − 4x1 − 6x2 : x21 − x2 ≤ 0, x1 + 5x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

}

One important feature for the SQP method is that it closely mimics the convergence properties
of Newton’s method and therefore, under appropriate conditions, superlinear convergence can be
observed. Moreover, the BFGS method can be used to approximate ∇2L(xk, vk), which can turn
the method dependent only on first order derivatives.

Notice that, because the constraints are considered implicitly in the subproblem QP (xk, uk, vk),
one cannot devise a line search for the method, which in turn, being based on successive quadratic
approximations, presents a risk for divergence.

The l1-SQP is a modern variant of SQP that addresses divergence issues arising in the SQP
method when considering solutions that are far away from the optimum, while presenting superior
computational performance.

In essence, l1-SQP relies on a similar principle than penalty methods, encoding penalisation for in-
feasibility in the objective function of the quadratic subproblem. In the context of SQP algorithms,
these functions are called “merit” functions. This not only allow for considering line searches (since
feasibility becomes encoded in the objective function with feasibility guaranteed at a minimum.
cf. penalty methods) or, alternatively, relying on a trust region approach, ultimately preventing
divergence issues.
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Figure 23.2: The SQP method converges in 6 iterations with ϵ = 10−6
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Let us consider the trust-region based l1-penalty QP subproblem, which can be formulated as

l1 −QP (xk, vk) :

min. ∇f(xk)⊤d+ 1

2
d⊤∇2L(xk, vk)d

+ µ

[
m∑

i=1

[gi(x
k) +∇gi(xk)⊤d]+ +

l∑

i=1

|hi(xk) +∇hi(xk)⊤d|
]

s.t.: −∆k ≤ d ≤ ∆k,

where µ is a penalty term, [ · ] = max {0, ·}, and ∆k is a trust region term. This variant is of
particular interest, because the subproblem l1 − QP (xk, vk) can be recast as a QP problem with
linear constraints:

l1 −QP (xk, vk) :

min. ∇f(xk)⊤d+ 1

2
d⊤∇2L(xk, vk)d+ µ

[
m∑

i=1

yi +

l∑

i=1

(z+i + z−i )

]

s.t.: −∆k ≤ d ≤ ∆k

yi ≥ gi(xk) +∇gi(xk)⊤d, i = 1 . . . ,m

z+i − z−i = hi(x
k) +∇hi(xk)⊤d, i = 1, . . . , l

y, z+, z− ≥ 0.

The subproblem l1 − QP (xk, vk) enjoys the same benefits the original form, meaning that it can
be solved with efficient simplex-method based solvers.

The trust-region variant of l1-SQP is globally convergent (does not diverge) and enjoys superlinear
convergence rate, as the original SQP. The l1-penalty term is what is often called a merit function
in the literature. Alternatively, one can disregard the trust region and employ a line search (either
exact or inexact) which would also enjoy globally convergent properties.

23.4 Generalised reduced gradient*

The generalised reduced gradient method resembles in many aspects the simplex method for linear
optimisation problems. It derives from the Wolfe’s reduced gradient. The term “reduced” refers
to the consideration of a reduced variable space, formed by a subset of the decision variables.

23.4.1 Wolfe’s reduced gradient

Let us consider the linearly constrained problem:

(P ) : min. f(x)

s.t.: Ax = b

Ax ≥ 0,

where f : Rn → R is differentiable, A is m× n and b ∈ Rm.
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To ease the illustration, we assume linear programming nondegeneracy, i.e., that any m columns
of A are linearly independent and every extreme point of feasible region has at least m positive
components and at most n−m zero components.

Being so, let us define a partition of A as A = (B,N), x⊤ = (x⊤B , x
⊤
N ), where B is an invertible

m×m matrix with xB > 0 as a basic vector and xN ≥ 0 as a nonbasic vector. This implies that
∇f(x)⊤ can also be partitioned as ∇f(x)⊤ = (∇Bf(x)

⊤,∇Nf(x)
⊤).

In this context, for d to be an improving feasible direction, we must observe that

1. ∇f(x)⊤d < 0

2. Ad = 0, with dj ≥ 0 if xj = 0 to retain feasibility.

We will show how to obtain a direction d that satisfies conditions 1 and 2. For that, let d⊤ =
(d⊤B , d

⊤
N ). We have that 0 = Ad = BdB + Ndn for any dN , implying that dB = −B−1NdN .

Moreover,

∇f(x)⊤d = ∇Bf(x)
⊤dB +∇Nf(x)

⊤dN

= (∇Nf(x)
⊤ −∇Bf(x)

⊤B−1N)dN (23.6)

The term r⊤N = (∇Nf(x)
⊤ −∇Bf(x)

⊤B−1N) is referred to as the reduced gradient as it express
the gradient of the function in terms of the nonbasic directions only. Notice that the reduced
gradient r holds a resemblance to the reduced costs from the simplex method. In fact

r⊤ = (r⊤B , r
⊤
N ) = ∇f(x)−∇Bf(x)

⊤B−1A

= (∇Bf(x)−∇Bf(x)
⊤B−1B,∇Nf(x)−∇Bf(x)

⊤B−1N)

= (0,∇Nf(x)−∇Bf(x)
⊤B−1N),

and thus ∇f(x) = r⊤d.

Therefore, dN must be chosen such that r⊤NdN < 0 and dj ≥ 0 if xj = 0. One way of achieving so
is employing the classic Wolfe’s rule, which states that

dj =

{
−rj , if rj ≤ 0,

−xjrj , if rj > 0.

Notice that the rule is related with the direction of the optimisation. For rj ≤ 0, one wants to
increase the value of xj in that coordinate direction, making dj non-negative. On the other hand,
if the reduced gradient is positive (rj > 0), one wants to reduce the value of xj , unless it is already
zero, a safeguard created by multiplying xj in the definition of the direction d.

The following result guarantee the convergence of Wolfe’s reduced gradient to a KKT point.

Theorem 23.2. Let x be a feasible solution to P such that x = (x⊤B , x
⊤
N ) and xB > 0. Consider

that A is decomposed accordingly into (B,N). Let r⊤ = ∇f(x)⊤ − ∇Bf(x)
⊤B−1A and let d be

formed using Wolfe’s rule. Then

1. if d ̸= 0, then d is an improving direction;

2. if d = 0, then x is a KKT point.
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Proof. d is a feasible direction by construction. Now, notice that

∇f(x)⊤d = ∇Bf(x)
⊤dB +∇Nf(x)

⊤dN

= [∇Nf(x)
⊤ −∇Bf(x)

⊤B−1N ]dN =
∑

j /∈IB

rjdj

where IB is the index set of basic variables. By construction (using Wolfe’s rule), either d = 0 or
∇f(x)⊤d < 0, being thus an improvement direction.

x is a KKT point if and only if there exists (u⊤B , u
⊤
N ) ≥ (0, 0) and v such that

(∇Bf(x)
⊤,∇Nf(x)

⊤) + v⊤(B,N)− (u⊤B , u
⊤
N ) = (0, 0) (23.7)

u⊤BxB = 0, u⊤NxN = 0. (23.8)

Since xB > 0 and uB ≥ 0, u⊤BxB = 0 if and only if uB = 0. From top row in (23.7),
v⊤ = −∇Bf(x)B

−1. Substituting in the bottom row of (23.7), we obtain u⊤N = ∇Nf(x)
⊤ −

∇Bf(x)
⊤B−1N = rN .

Thus, the KKT conditions reduce to rN ≥ 0 and r⊤NxN = 0, only observed when d = 0 by
definition.

Algorithm 25 presents a pseudocode for the Wolfe’s reduced gradient. A few implementation
details stand out. First, notice that the basis is selected choosing the largest components in
value, which differs from the simplex method by allowing for nonbasic variables to assume nonzero
values. Moreover, notice that a line search is employed conditioned on bounds on the step size λ
to guarantee that feasibility x ≥ 0 is retained.

Algorithm 25 Wolfe’s reduced gradient method

1: initialise. ϵ > 0, x0 with Axk = b, k = 0, columns aj , j = 1, . . . , n of A
2: while ||dk|| > ϵ do
3: Ik = index set for m largest components of xk

4: Let A = (B,N), where B =
{
aj : j ∈ Ik

}
, and N =

{
aj : j /∈ Ik

}

5: rk⊤ = ∇f(xk)⊤ −∇Bf(x
k)⊤B−1A

6: dkj =

{
−rkj , if j /∈ Ik and rj ≤ 0;

−rjxj , if j /∈ Ikandrj > 0.

7: dB = −B−1NdN
8: if d = 0 then
9: return xk

10: end if

11: λ =

{
+∞, if dk ≥ 0;

min
{
xkj /d

k
j : dkj < 0

}
, if dk < 0.

12: λk = argmin
{
f(xk + λdk) : 0 ≤ λ ≤ λ

}
.

13: xk+1 = xk + λkdk; k = k + 1.
14: end while
15: return xk.

23.4.2 Generalised reduced gradient method

The generalised reduced gradient extends Wolfe’s method by:
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1. Nonlinear constraints are considered via first-order approximation at xk

h(xk) +∇h(xk)⊤(x− xk) = 0⇒ h(xk)⊤x = h(xk)⊤xk.

with an additional restoration phase that has the purpose of recovering feasibility via pro-
jection or using Newton’s method.

2. Consideration of superbasic variables. In that, xN is further partitioned into x⊤N = (x⊤S , x
⊤
N ′).

The superbasic variables xS (with index set JS , 0 ≤ |JS | ≤ n−m), are allowed change value, while
xN ′ are kept at their current value. Hence, d⊤ = (d⊤B , d

⊤
S , d

⊤
N ′), with dN ′ = 0. From Ad = 0, we

obtain dB = −B−1SdS . Thus d becomes

d =



dB

dS

dN ′


 =



−B−1S

I

0


 dS .
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